Hyperlink Classification via Structured Graph Embedding

Main Contributions
- We formally define a hyperlink classification problem in web search by classifying hyperlinks into three classes based on their roles: navigation, suggestion, and action.
- We approach the problem from a structured graph embedding perspective, by modifying knowledge graph embedding techniques.
- Relation perturbation in negative sampling enables us to significantly improve performance in classifying hyperlinks on web graphs.

Real-World Web Graphs
- The hyperlinks are created for different reasons, and play different roles.
 - Navigation links are designed to navigate the main website.
 - Suggestion links suggest users to take a look at related information.
 - Action links are made to invoke actions such as ‘edit’, or ‘send an email’.
- We create three real-world web graphs by crawling a set of web pages and the hyperlinks starting from a web page in Stack Overflow.

| $|V|$ | $|E|$ | navigation | suggestion | action |
|---|---|---|---|---|
| 437 | 404 | 437 | 268 (61.33%) | 112 (25.63%) | 57 (13.04%) |
| 10000 | 332 | 1442 | 1,284 (89.04%) | 93 (6.45%) | 65 (4.51%) |
| 2,202 | 2,010 | 10,992 (98.92%) | 85 (0.85%) | 23 (0.23%) |

All the datasets/codes are available on http://bigdata.cs.ksku.edu.

Knowledge Graph Embedding
- A knowledge graph is a graphical representation of human knowledge.
 - Each fact can be described as a triplet (head entity, relation, tail entity).
 - The goal of knowledge graph embedding is to represent entities and relations in a feature space while preserving the structure of the graph.
 - Given a set of golden triplets (denoted by S) and a set of corrupted triplets (denoted by S'), minimize the following loss function:

$$L = \sum_{(r,t,s) \in S} |f(h,r,t) - f(h',r',t')| + \gamma |f(h,r,t) - f(h',r',t')|,$$

where $|x|_\gamma = \max(0, \gamma x)$ and γ is the margin.

- How to compute $f(h,r,t)$ determines different embedding models.
- Given a directed web graph $G = (V, E)$ where $V = \{p_1, p_2, \cdots, p_n\}$ and $E = \{(p_i, p_j) : p_i, p_j \in V\}$, each hyperlink r belongs to one of the three relation labels $R = \{n, s, a\}$.
- Given a golden triplet (p_i, r, p_j), generate a corrupted triplet (p_i, r, p_j).
 - Minimize the following loss function:

$$L = \sum_{(r,t,s) \in S} |f(p_i, r, p_j) - f(p_i', r, p_j')|.$$

- TransE, TransH, and TransR only corrupt entities.
- We corrupt an entity with probability α, and corrupt the relation with probability $1 - \alpha$ ($0 < \alpha \leq 1$).

$$c(p_i, r, p_j) = \begin{cases} \text{prob. } \alpha/2 : & (p_i, r, q) \in V \setminus \{p_j\}, (p_i, r, q) \notin S, \\ \text{prob. } (1 - \alpha) : & (p_i, r, q) \in S, \end{cases}$$

For a directed edge (p_i, r, p_j), we predict the relation r' for (p_i, r, p_j) by computing

$$r' = \text{argmin}_{r \in R} f(p_i, r, p_j)$$

where r' is the predicted relation.

Hyperlink Classification Model (Cont’d)
- False negative: when we corrupt entities, there is a chance that it is not a corrupted one but just unobserved one in the train set.
 - If we corrupt a golden triplet (p_i, n, p_j) to (p_i, n, p_j), there is a risk that (p_i, n, p_j) does not exist in the train set, but exist in the valid or test sets.
 - The navigation links are prevalent while there are very few suggestion and action links. This bias makes the entity corruption undesirable.
- If we corrupt a relation, it is guaranteed that the corrupted triplet is not in the test set because each pair of web pages has a unique relation.
 - If (p_i, n, p_j) is observed, (p_i, s, p_j) or (p_i, a, p_j) should not hold.
- If we only corrupt relations and do not corrupt entities to create the negative triplets, we might have an overfitting problem and the model is not sufficiently trained for an unobserved entity.

Experimental Results
- The average F1 of our model with different α values.

<table>
<thead>
<tr>
<th>Model</th>
<th>$\alpha = 0.3$</th>
<th>$\alpha = 0.5$</th>
<th>$\alpha = 0.7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransE</td>
<td>34.29</td>
<td>25.39</td>
<td>33.88</td>
</tr>
<tr>
<td>TransH</td>
<td>60.25</td>
<td>58.91</td>
<td>59.83</td>
</tr>
<tr>
<td>TransR</td>
<td>57.99</td>
<td>57.32</td>
<td>54.04</td>
</tr>
</tbody>
</table>

Conclusion & Future Work
- By introducing an effective relation perturbation in embedding models, we can successfully classify hyperlinks on web graphs.
- We plan to extend our analysis to a case where we can incorporate various features or attributes of web pages or hyperlinks.
