Overlapping Community Detection Using Seed Set Expansion

Joyce Jiyoung Whang¹ David F. Gleich² Inderjit S. Dhillon¹ ¹The University of Texas at Austin ²Purdue University

International Conference on Information and Knowledge Management Oct. 27th - Nov. 1st, 2013.

Contents

- Introduction
 - Overlapping Communities in Real-world Networks
 - Measures of Cluster Quality
 - Graph Clustering and Weighted Kernel k-Means
- The Proposed Algorithm
 - Filtering Phase
 - Seeding Phase
 - Seed Set Expansion Phase
 - Propagation Phase
- Experimental Results
 - Conductance
 - Ground-truth Accuracy
 - Runtime
- Conclusions

Overlapping Communities

- Community (cluster) in a graph $G = (\mathcal{V}, \mathcal{E})$
 - Set of cohesive vertices
 - Communities naturally overlap (e.g. social circles)
- Graph Clustering (Partitioning)
 - k disjoint clusters C_1, \cdots, C_k such that $\mathcal{V} = C_1 \cup \cdots \cup C_k$
- Overlapping Community Detection
 - k overlapping clusters such that $C_1 \cup \cdots \cup C_k \subseteq V$

Real-world Networks

- Collaboration networks: co-authorship
- Social networks: friendship
- Product network: co-purchasing information

Graph	No. of vertices	No. of edges			
Collaboration networks					
HepPh	11,204	117,619			
AstroPh	17,903	196,972			
CondMat	21,363	91,286			
DBLP	317,080	1,049,866			
Social networks					
Flickr	1,994,422	21,445,057			
Myspace	2,086,141	45,459,079			
LiveJournal	1,757,326	42,183,338			
Product network					
Amazon	334,863	925,872			

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and Knowledge Management (4/??)

Measures of cluster quality

• Normalized Cut of a cluster

$$\mathtt{ncut}(\mathcal{C}_i) = rac{\mathtt{links}(\mathcal{C}_i,\mathcal{V}ackslash\mathcal{C}_i)}{\mathtt{links}(\mathcal{C}_i,\mathcal{V})}.$$

Conductance

$$\texttt{conductance}(\mathcal{C}_i) = rac{\texttt{links}(\mathcal{C}_i, \mathcal{V} ackslash \mathcal{C}_i)}{\min\left(\texttt{links}(\mathcal{C}_i, \mathcal{V}), \texttt{links}(\mathcal{V} ackslash \mathcal{C}_i, \mathcal{V})
ight)}.$$

Graph Clustering and Weighted Kernel k-Means

- A general weighted kernel *k*-means objective is equivalent to a weighted graph clustering objective (Dhillon et al. 2007).
- Weighted kernel k-means
 - Objective

$$J = \sum_{c=1}^{k} \sum_{\mathbf{x}_i \in \pi_c} w_i ||\varphi(\mathbf{x}_i) - \mathbf{m}_c||^2, \text{ where } \mathbf{m}_c = \frac{\sum_{\mathbf{x}_i \in \pi_c} w_i \varphi(\mathbf{x}_i)}{\sum_{\mathbf{x}_i \in \pi_c} w_i}.$$

• Distance between a vertex $v \in C_i$ and cluster C_i

$$extsf{dist}(v,\mathcal{C}_i) = -rac{2 extsf{links}(v,\mathcal{C}_i)}{ extsf{deg}(v) extsf{deg}(\mathcal{C}_i)} + rac{1 extsf{links}(\mathcal{C}_i,\mathcal{C}_i)}{ extsf{deg}(\mathcal{C}_i)^2} + rac{\sigma}{ extsf{deg}(v)} - rac{\sigma}{ extsf{deg}(\mathcal{C}_i)}$$

The Proposed Algorithm

Proposed Algorithm

- Seed Set Expansion
 - Carefully select seeds
 - Greedily expand communities around the seed sets
- The algorithm
 - Filtering Phase
 - Seeding Phase
 - Seed Set Expansion Phase
 - Propagation Phase

- Remove unimportant regions of the graph
 - Trivially separable from the rest of the graph
 - Do not participate in overlapping clustering
- Our filtering procedure
 - Remove all single-edge biconnected components (remain connected after removing any vertex and its adjacent edges)
 - Compute the largest connected component (LCC)

	Biconnected core		Detached graph	
	No. of vertices (%)	No. of edges (%)	No. of components	Size of LCC (%)
HepPh	9,945 (88.8%)	116,099 (98.7%)	1,123	21 (0.0019%)
AstroPh	16,829 (94.0%)	195,835 (99.4%)	957	23 (0.0013%)
CondMat	19,378 (90.7%)	89,128 (97.6%)	1,669	12 (0.00056%)
DBLP	264,341 (83.4%)	991,125 (94.4%)	43,093	32 (0.00010%)
Flickr	954,672 (47.9%)	20,390,649 (95.1%)	864,628	107 (0.000054%)
Myspace	1,724,184 (82.7%)	45,096,696 (99.2%)	332,596	32 (0.000015%)
LiveJournal	1,650,851 (93.9%)	42,071,541 (99.7%)	101,038	105 (0.000060%)
Amazon	291,449 (87.0%)	862,836 (93.2%)	25,835	250 (0.00075%)

- The biconnected core substantial portion of the edges
- Detached graph likely to be disconnected
- Whiskers separable from each other, no significant size

- Graclus centers
 - Graclus: a high quality and efficient graph partitioning scheme

Algorithm 1 Seeding by Graclus Centers

Input: graph *G*, the number of seeds *k*.

Output: the seed set S.

- 1: Compute exhaustive and non-overlapping clusters C_i (i=1,...,k) on G.
- 2: Initialize $S = \emptyset$.
- 3: for each cluster C_i do
- 4: **for** each vertex $v \in C_i$ **do**
- 5: Compute dist (v, C_i) .
- 6: end for
- 7: $S = \{ \operatorname{argmin} \operatorname{dist}(v, C_i) \} \cup S.$

8: end for

Find the most central vertex in cluster C_i

- Spread Hubs
 - Independent set of high-degree vertices

Algorithm 1 Seeding by Spread Hubs

Input: graph $G = (\mathcal{V}, \mathcal{E})$, the number of seeds k.

Output: the seed set S.

- 1: Initialize $S = \emptyset$.
- 2: All vertices in \mathcal{V} are unmarked.
- 3: while |S| < k do
- 4: Let \mathcal{T} be the set of unmarked vertices with max degree.
- 5: for each $t \in \mathcal{T}$ do
- 6: **if** *t* is unmarked **then**

7:
$$\mathcal{S} = \{t\} \cup \mathcal{S}.$$

- 8: Mark *t* and its neighbors.
- 9: end if
- 10: end for
- 11: end while

- Other seeding strategies
 - Local Optimal Egonets. (Gleich and Seshadhri 2012)
 - ego(s): the egonet of vertex s.
 - Select a seed s such that

```
\texttt{conductance}(\texttt{ego}(s)) \leq \texttt{conductance}(\texttt{ego}(v))
```

for all v adjacent to s.

- Random Seeds. (Andersen and Lang 2006)
 - Randomly select k seeds.

Seed Set Expansion Phase

- Personalized PageRank clustering scheme (Andersen et al. 2006)
 - 1 Given a seed node, compute an approximation of the stationary distribution of a random walk.
 - 2 Divide the stationary distribution scores by the degree of each node (technical detail needed to remove bias towards high-degree nodes).
 - 3 Sort the vector, and examine nodes in order of highest to lowest score and compute the conductance score for each threshold cut.
 - Returns a good conductance cluster
 - Remarkably efficient when combined with appropriate data structures
 - For each seed, we use the entire vertex neighborhood as the restart for the personalized PageRank routine.

Seed Set Expansion Phase

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and

Conference on Information and Knowledge Management (27/??)

- Each community is further expanded.
- Add whiskers to communities via bridge.

Algorithm 2 Propagation Module

Input: graph $G = (\mathcal{V}, \mathcal{E})$, biconnected core $G_C = (\mathcal{V}_C, \mathcal{E}_C)$, communities of $G_C : C_i$ $(i = 1, ..., k) \in C$.

Output: communities of G.

- 1: for each $C_i \in C$ do
- 2: Detect bridges \mathcal{E}_{B_i} attached to \mathcal{C}_i .
- 3: for each $b_j \in \mathcal{E}_{B_i}$ do
- 4: Detect the whisker $w_j = (V_j, \mathcal{E}_j)$ which is attached to b_j .
- 5: $C_i = C_i \cup V_j$.
- 6: end for
- 7: end for

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and Knowledge Management (30/??)

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and Knowledge Management (31/??)

- This process does not increase the cut of each cluster.
- Normalized cut of the expanded cluster is always smaller than or equal to that of original cluster.

Experimental Results

Experiments

- Comparison with other state-of-the-art methods
 - **Demon** (Coscia et al. 2012)
 - Extracts and computes clustering of ego networks
 - Bigclam (Yang and Leskovec 2013)
 - Low-rank non-negative matrix factorization based modeling
- Seed set expansion methods with different seeding strategies
 - Graclus centers
 - Spread hubs
 - Local Optimal Egonets (Gleich and Seshadhri 2012)
 - Random Seeds (Andersen and Lang 2006)

• arXiv CondMat collaboration network (21,363 nodes)

- Flickr (1,994,422 nodes)
 - Demon fails on Flickr.

Conference on Information and Knowledge Management (36/??)

- LiveJournal (1,757,326 nodes)
 - Demon fails on LiveJournal.

Joyce Jiyoung Whang, The University of Texas at Austin

Conference on Information and Knowledge Management (37/??)

- Myspace (2,086,141 nodes)
 - Demon fails on Myspace.
 - Bigclam does not finish after running for one week.

Joyce Jiyoung Whang, The University of Texas at Austin

Conference on Information and Knowledge Management (38/??)

Community Quality via Ground Truth

- Precision
 - how many vertices are actually in the same ground truth community
- Recall
 - how many vertices are predicted to be in the same community in a retrieved community
- Compute F_1 , and F_2 measures
 - The ground truth communities are partially annotated.
 - F_2 measure puts more emphasis on recall than precision

Community Quality via Ground Truth

Comparison of Running Times

Joyce Jiyoung Whang, The University of Texas at Austin Conference on Information and Knowledge Management (41/??)

Conclusions

Conclusions

- Efficient overlapping community detection algorithm
 - Uses a seed set expansion
- Two seed finding strategies
 - Graclus centers
 - Spread hubs
- Our new seeding strategies are better than other strategies, and are thus effective in finding good overlapping clusters in a graph.
- The seed set expansion approach significantly outperforms other state-of-the-art methods.

References

- I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1944-1957, 2007.
- R. Andersen, F. Chung and K. Lang. Local graph partitioning using PageRank vectors. In FOCS, 2006.
- D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In KDD, pages 597-605, 2012.
- R. Andersen and K. J. Lang. Communities from seed sets. In WWW, pages 223-232, 2006.
- J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnegative matrix factorization approach. In WSDM, pages 587-596, 2013.
- M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. Demon: a local-first discovery method for overlapping communities. In KDD, 2012.