Non-Exhaustive, Overlapping Co-Clustering

Joyce Jiyoung Whang^{*1} and Inderjit S. Dhillon² ¹ Sungkyunkwan University (SKKU), ² The University of Texas at Austin ACM International Conference on Information and Knowledge Management, 2017

Main Contributions

- Non-Exhaustive, Overlapping Co-Clustering Problem:
 - Simultaneously identify a clustering of the rows as well as the columns of a two dimensional data matrix.
 - Both of the row and column clusters can overlap with each other.
 - Outliers are not assigned to any cluster.
- ► An intuitive objective function is proposed to formulate this problem.
- NEO-CC: an efficient iterative algorithm that optimizes the non-exhaustive, overlapping co-clustering objective function.
- Experimental results show that the NEO-CC algorithm effectively captures the underlying co-clustering structure of real-world data.

An Example on a User-Movie Rating Matrix

- Result on a user-movie rating dataset where each row represents a user and each column represents a movie.
- The NEO-CC method detects one outlier from the rows, which corresponds to a user who randomly gives ratings.

The NEO-CC Algorithm

Input: $\boldsymbol{X} \in \mathbb{R}^{n \times m}$, \boldsymbol{k} , \boldsymbol{l} , α_r , α_c , β_r , β_c

Output: Row clustering $\boldsymbol{U} \in \{0, 1\}^{n \times k}$, Column clustering $\boldsymbol{V} \in \{0, 1\}^{m \times l}$

- 1: Initialize U, V, and t = 0.
- 2: while not converged do
- 3: Update row clustering by computing the distance between a data point $\mathbf{x}_p \in \mathcal{X}^r$ for $p=1, \dots, n$ and a row cluster \mathcal{C}_q^r for $q=1, \dots, k$.
- 4: Update column clustering by computing the distance between a data point x_p ∈ X^c for p=1, · · · , m and a column cluster C^c_q for q=1, · · · , l.
- 5: end while
- **Example:** the distance between a data point and a row cluster.

(b) Rearrangement of the rows and the columns according to the output of the NEO-CC method.

Figure: Visualization of a user-movie rating dataset.

The NEO-CC Objective Function

Idea: Consider the sum of squared differences between each entry and each mean of the co-clusters the data point belongs to.

 $\begin{array}{ll} \text{minimize} & \sum_{i=1}^{k} \sum_{j=1}^{l} \| D(\mathbf{u}_{i}) \mathbf{X} D(\mathbf{v}_{j}) - \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{T} \mathbf{X} \hat{\mathbf{v}}_{j} \hat{\mathbf{v}}_{j}^{T} \|_{F}^{2} \\ \text{subject to} & \text{trace}(\mathbf{U}^{T} \mathbf{U}) = (1 + \alpha_{r})n, \\ & \sum_{i=1}^{n} \mathbb{I}\{(\mathbf{U}\mathbf{1})_{i} = \mathbf{0}\} \leq \beta_{r}n, \\ & \text{trace}(\mathbf{V}^{T} \mathbf{V}) = (1 + \alpha_{c})m, \\ & \sum_{i=1}^{m} \mathbb{I}\{(\mathbf{V}\mathbf{1})_{i} = \mathbf{0}\} \leq \beta_{c}m, \end{array}$

- $\boldsymbol{U} = [u_{ij}]_{n \times k}$: the assignment matrix for row clustering
- $V = [v_{ij}]_{m \times l}$ denote the assignment matrix for column clustering.
- $\mathbb{I}{exp} = 1$ if *exp* is true; 0 otherwise.
- $D(\mathbf{y}) = [d_{ij}]_{m \times m}$: the diagonal matrix with $d_{ii} = y_i$ (i = 1, ..., m).
- α_r and β_r are the parameters for row clustering, and α_c and β_c are the parameters for column clustering. α_r and α_c control the amount of overlap while β_r and β_c control the degree of non-exhaustiveness.
- Example: for the entry x₂₁, the NEO-CC objective considers the squared differences between x₂₁ and four different means.

- Figure: The distance between \mathbf{x}_1^r and a row cluster \mathcal{C}_1^r .
- We can theoretically prove that the NEO-CC algorithm monotonically decreases the NEO-CC objective function.

Experimental Results

- Datasets: user-movie rating matrices, an yeast gene expression dataset, and a social network with node attributes.
- Compare the clustering performance of the NEO-CC method with other state-of-the-art co-clustering and one-way clustering methods.
- The NEO-CC algorithm achieves the highest F_1 scores.
 - ► The performance of NEO-CC is even better than NEO-Irsdp.
 - Co-clustering enables us to perform an implicit dimensionality reduction – performing an implicit regularized clustering.

Table: F_1 scores (%) on the real-world datasets.

		IPM	ROCC	MSSR1	MSSR2	NEO-iter	NEO-Irsdp	NEO-CC
ML1	average	22.4	55.7	43.8	44.2	56.3	56.4	58.1
ML2	best	36.2	53.3	50.6	50.5	56.8	56.8	58.8
	worst	18.6	53.3	50.2	48.2	56.8	56.8	58.1
	average	26.7	53.3	50.5	49.4	56.8	56.8	58.4
Yeast	best	N/A	15.0	17.4	19.3	36.6	39.1	40.7
	worst	N/A	12.8	16.4	18.0	35.6	39.0	36.2
	average	N/A	14.3	16.9	18.5	36.0	39.1	40.0
Facebook	best	N/A	26.9	30.6	31.8	34.7	37.6	37.7
	worst	N/A	24.0	28.7	27.3	33.3	33.7	37.1
	average	N/A	25.2	29.7	29.7	33.9	35.9	37.3

59

(b) The contribution of x_{21} to the NEO-CC objective

Figure: The NEO-CC objective considers the differences between each entry and the co-cluster means the entry belongs to.

Figure: F_1 scores of the best baseline method (NEO-Irsdp) and the NEO-CC method on the ML2 dataset.

Conclusions & Future Work

- The NEO-CC method provides a principled way to capture the underlying co-clustering structure of real-world data.
- We plan to investigate a low-rank semidefinite programming for the NEO-CC method to develop a more sophisticated algorithm.

Joyce Jiyoung Whang and Inderjit S. Dhillon. Non-Exhaustive, Overlapping Co-Clustering. In CIKM, 2017.