An Empirical Study of Community Overlap: Ground-truth, Algorithmic Solutions, and Implications

Joyce Jiyoung Whang

Sungkyunkwan University (SKKU) ACM International Conference on Information and Knowledge Management, 2017

Main Contributions

- We investigate the properties of the nodes and the edges placed within the overlapped regions between different communities.
- Overlapped nodes and overlapped edges play different roles from the ones that are not in the overlapped regions.
- Highly overlapped nodes are involved in structure holes of a network.
- Overlapped nodes and edges play an important role in forming new links and diffusing information through a network.

Definitions & Experimental Setup

Let S_i denote a set of communities a vertex v_i belongs to.

New Links in Community Overlap

- Social networks keep changing over time, e.g., new links are formed.
- Patterns of the link formations in the overlapped regions
 - Real-world datasets with the ground-truth new links.
 - New edges are formed within communities.
 - New edges are formed in the overlapped regions.
 - New edges include highly overlapped edges.

Table: Classification of the edges according to the number of common communities of the endpoints of the edges.

	Flic	kr-b	LiveJournal-b		
	Ground (Q)	Random (\mathcal{R})	Ground (Q)	Random (\mathcal{R})	
$ \mathcal{S}_i \cap \mathcal{S}_j = 0$	73,858 (18.66%)	223,995 (56.58%)	8,940 (1.38%)	402,832 (61.98%)	
$ \mathcal{S}_i \cap \mathcal{S}_j = 1$	64,112 (16.19%)	103,164 (26.06%)	6,290 (0.97%)	99,433 (15.30%)	
$ \mathcal{S}_i \cap \mathcal{S}_j \geq 2$	257,910 (65.15%)	68,721 (17.36%)	634,679 (97.66%)	147,644 (22.72%)	
$mean(\mathcal{S}_i \cap \mathcal{S}_j)$	4.77	0.68	20.00	1.23	
$median(\mathcal{S}_i \cap \mathcal{S}_j)$	3	0	15	0	

- Q: the ground-truth new links, \mathcal{R} : randomly generated links
- Given an edge $e = \{v_i, v_i\}$, we classify the edge into three categories: (i) a between-community edge, (ii) a non-overlapped within community edge, (iii) an overlapped edge.

Information Diffusion through Overlapped Nodes and Edges

- A vertex v_i is an overlapped node if $|S_i| \ge 2$.
- ▶ An edge $e = \{v_i, v_j\}$ is an overlapped edge if $|S_i \cap S_j| \ge 2$.
- ► We have the ground-truth communities for DBLB and LiveJournal.
- ► We use the NISE method^{*} to produce algorithmic communities.

(* J. Whang et al., "Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion", TKDE, 2016.)

Table 1: Summary of real-world networks.

Graph	No. of vertices	No. of edges	Ground-truth	Table 2: Ground-truth Communities.		
DBLP LiveIournal	317,080 1 143 395	1,049,866 16 880 773	\checkmark		DBLP	LiveJournal
Flickr-a	1,994,422	21,445,057	N/A	No. of communities	13,477	662,859
Myspace-a LiveJournal-a	2,086,141 1,757,326	45,459,079 42,183,338	N/A N/A	No. of overlapped nodes (%) No. of overlapped edges (%)	110,806 (35%) 356,801 (34%)	752,537 (65%) 4,724,058 (28%)

Overlapped Nodes and Structural Holes in a Network

- Structural hole: an empty space of a network between two sets of nodes that do not closely interact with each other.
 - A set of nodes that have multiple local bridges.
 - Adjacent to many local bridges \rightarrow a low clustering coefficient. (Clustering coefficient of v_i : the probability that two randomly selected neighbors of v_i are directly connected.)
- Clustering coefficients of highly overlapped nodes
 - As the overlap degree (i.e., $|S_i|$) increases, the average clustering coefficient decreases.
 - High-overlap nodes tend to have low clustering coefficients even lower clustering coefficients than high-degree nodes.
 - Highly-overlapped nodes play as structural holes in a network.

- Information diffusion: model the way how information is propagated.
- A networked coordination game
 - ▶ Each node has a choice between two possible behaviors A and B.
 - If there exists an edge between v_i and v_j and the nodes decide to choose the same behavior, there is an incentive for them.
- Roles of the overlapped nodes
 - The number of infected nodes is maximized when we select the initial nodes among the overlapped nodes.
 - Whether a node is an overlapped node or not is an important factor to determine the success of information spreading.
 - The overlapped nodes effectively spread the information.
- Roles of the overlapped edges
 - Information is not spread well when the overlapped edges are removed.
 - Overlapped edges are crucial in information propagation.

Figure: (a)&(b): Information diffusion with different initial nodes. (c) Information diffusion with differently removed edges.

- ▶ We choose the initial node set in three different ways: (i) random nodes, (ii) non-overlapped nodes, and (iii) overlapped nodes.
- We remove edges in the network in three ways: (i) random edges,

Figure: The average clustering coefficients. Highly-overlapped nodes tend to have low clustering coefficients.

- Sort the nodes according to their overlap degrees in descending order.
- ▶ t_p : the overlap degree of the $\lceil pn \rceil$ -th node ($0 \le p \le 1$), *n*: the total # of nodes.
- Select the nodes whose overlap degrees are greater than or equal to t_p , and compute their average clustering coefficient.
- ▶ x-axis: [pn], y-axis: the average clustering coefficient.

(ii) non-overlapped edges, and (iii) overlapped edges.

Conclusions & Future Work

- High-overlap nodes have low clustering coefficients—they bridge different communities.
- When networks evolve over time, the new links tend to be formed within overlapped regions.
- Overlapped nodes and overlapped edges play a critical role in spreading information throughout the network.
- Useful intuition and insight for many practical applications including link prediction and information propagation models.

Joyce Jiyoung Whang. An Empirical Study of Community Overlap: Ground-truth, Algorithmic Solutions, and Implications. In CIKM, 2017.