Scalable and Memory-Efficient Clustering of Large-Scale Social Networks

Joyce Jiyoung Whang, Xin Sui, Inderjit S. Dhillon
Department of Computer Science
The University of Texas at Austin

IEEE International Conference on Data Mining (ICDM)

December 10 - 13, 2012

Contents

- Introduction
 - Problem Statement
 - Contributions
 - Preliminaries
- Multilevel Graph Clustering Algorithms
 - Multilevel Framework for Graph Clustering
 - Limitations of Multilevel Framework
- Proposed Algorithm: GEM
 - Graph Extraction
 - Clustering of Extracted Graph
 - Propagation and Refinement
- Parallel Algorithm: PGEM
- Experimental Results
- Conclusions

Introduction

Problem Statement

- Graph Clustering
 - Graph $G = (\mathcal{V}, \mathcal{E})$
 - k disjoint clusters $\mathcal{V}_1, \cdots, \mathcal{V}_k$ such that $\mathcal{V} = \mathcal{V}_1 \cup \cdots \cup \mathcal{V}_k$.
- Social Networks
 - Vertices: actors, edges: social interactions
 - Distinguishing properties
 - Power law degree distribution
 - Hierarchical structure

Contributions

- Multilevel Graph Clustering Algorithms
 - PMetis, KMetis, Graclus
 - ParMetis (Parallel implementation of KMetis)
 - Performance degradation
 - KMetis 19 hours, more than 180 Gigabytes memory to cluster a Twitter graph (50 million vertices, one billion edges).

- GEM (Graph Extraction + weighted kernel k-Means)
 - Scalable & memory-efficient clustering algorithm
 - Comparable or better quality
 - Much faster and consumes much less memory
 - PGEM (Parallel implementation of GEM)
 - Higher quality of clusters
 - Much better scalability
 - GEM takes less than three hours on Twitter (40 Gigabytes memory).
 - PGEM takes less than three minutes on Twitter on 128 processes.

Preliminaries: Graph Clustering Objectives

- Kernighan-Lin objective
 - PMetis, KMetis
 - k equal-sized clusters

$$\min_{\mathcal{V}_1, \dots, \mathcal{V}_k} \sum_{i=1}^k \frac{\mathit{links}(\mathcal{V}_i, \mathcal{V} \backslash \mathcal{V}_i)}{|\mathcal{V}_i|} \text{ such that } |\mathcal{V}_i| = \frac{|\mathcal{V}|}{k}.$$

- Normalized cut objective
 - Graclus
 - Minimize cut relative to the degree of a cluster

$$\min_{\mathcal{V}_1, \dots, \mathcal{V}_k} \sum_{i=1}^k \frac{\mathit{links}(\mathcal{V}_i, \mathcal{V} \setminus \mathcal{V}_i)}{\mathit{degree}(\mathcal{V}_i)}.$$

Preliminaries: Weighted Kernel k-Means

- A general weighted kernel k-means objective is equivalent to a weighted graph clustering objective.
- Weighted kernel k-means
 - Objective

$$J = \sum_{c=1}^{k} \sum_{\mathbf{x}_i \in \pi_c} w_i ||\varphi(\mathbf{x}_i) - \mathbf{m}_c||^2, \text{ where } \mathbf{m}_c = \frac{\sum_{\mathbf{x}_i \in \pi_c} w_i \varphi(\mathbf{x}_i)}{\sum_{\mathbf{x}_i \in \pi_c} w_i}.$$

- Algorithm
 - Assigns each node to the closest cluster.
 - After all the nodes are considered, the centroids are updated.
 - Given the Kernel matrix K, where $K_{ij} = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$,

$$||\varphi(\mathbf{x}_i) - \mathbf{m}_c||^2 = K_{ii} - \frac{2\sum_{\mathbf{x}_j \in \pi_c} w_j K_{ij}}{\sum_{\mathbf{x}_i \in \pi_c} w_j} + \frac{\sum_{\mathbf{x}_j, \mathbf{x}_l \in \pi_c} w_j w_l K_{jl}}{(\sum_{\mathbf{x}_j \in \pi_c} w_j)^2}.$$

Multilevel Graph Clustering Algorithms

Multilevel Framework for Graph Clustering

- PMetis, KMetis, Graclus
- Multilevel Framework
 - Coarsening phase
 - Initial clustering phase
 - Refinement phase

Problems with Coarsening Phase

- Coarsening of a scale-free network can lead to serious problems.
 - Most low degree vertices tend to be attached to high degree vertices.
 - Low degree vertices have little chance to be merged.
 - Example:
 - No. of vertices in the original graph: 32
 - No. of vertices in the coarsened graph: 24

Problems with Coarsening Phase

- Coarsening of a scale-free network
 - Transform the original graph into smaller graphs level by level

Limitations of Multilevel Framework

- Difficulties of Coarsening in Large Social Networks
 - In the coarsening from G_i to G_{i+1} ,

Graph Reduction Ratio
$$= \frac{|\mathcal{V}_i|}{|\mathcal{V}_{i+1}|}.$$

- Ideally, graph reduction ratio would equal 2.
- The success of multilevel algorithms high graph reduction ratio
- Power law degree distribution graph reduction ratio becomes small.

Limitations of Multilevel Framework

- Memory Consumption
 - Multilevel algorithms generate a series of graphs.
 - Total memory consumption increases rapidly during coarsening phase.

- Difficulties in Parallelization
 - Coarsening requires intensive communication between processes.

Proposed Algorithm: GEM

Overview of GEM

- Graph Extraction
- Clustering of Extracted Graph
- Propagation and Refinement

Graph Extraction

Extract a skeleton of the original graph using high degree vertices.

- High degree vertices
 - Tend to preserve the structure of a network
 - Popular and influential people

Down-Path Walk Algorithm

- Refer to a path $v_i \rightarrow v_j$ as a down-path if $d_i \geq d_j$.
- Follow a certain number of down-paths.
- Generate a seed by selecting the final vertex in the path.
- Mark the seed, and its neighbors.
- Repeat this procedure until we get *k* seeds in the graph.

Higher Degree Vertices

Down-Path Walk Algorithm

- Refer to a path $v_i \rightarrow v_j$ as a down-path if $d_i \geq d_j$.
- Follow a certain number of down-paths.
- Generate a seed by selecting the final vertex in the path.
- Mark the seed, and its neighbors.
- Repeat this procedure until we get *k* seeds in the graph.

Higher Degree Vertices

- Online Weighted Kernel k-means
 - Initialization of clusters

Assign each vertex to the cluster which allows the least increase of the total objective.

- Online Weighted Kernel *k*-means
 - Graph clustering using online weighted kernel k-means

Propagation and Refinement

Propagation

- Propagate clustering of extracted graph to the entire original graph.
- Visit vertices not in extracted graph in a breadth-first order (starting from vertices of extracted graph).
- Arrive at initial clustering of the original graph (by online weighted kernel k-means).

Refinement

- Refine the clustering of the original graph.
- Good initial clusters are achieved by the propagation step.
- Refinement step efficiently improves the clustering result (by online weighted kernel k-means).

Parallel Algorithm: PGEM

- GEM is easy to parallelize for large number of processes.
- Graph distribution across different processes
 - Each process: an equal-sized subset of vertices & their adjacency lists.
- Graph extraction
 - Each process scans its local vertices, and picks up high degree vertices.
 - The extracted graph is randomly distributed over all the processes.
- Seed selection phase
 - Seeds are generated in rounds.
 - Leader process decides the number of seeds each process will generate.
 - Proportional to the number of currently unmarked vertices in that process

- Parallel Down-Path Walk Algorithm
 - Neighbor vertices might be located in a different process.
 - Ghost Cells
 - For each remote neighbor vertex, a mirror vertex is maintained.
 - Buffer the information of its remote counterpart

Higher Degree Vertices

- Parallel Down-Path Walk Algorithm (continued)
 - Passing a walk to another process
 - Process 1 finds that the next vertex it will visit belongs to process 2.
 - Then process 1 stops this walk and notifies process 2 to continue it.

- Parallel Online Weighted Kernel k-means
 - Initialization of clusters
 - Ghost cells: accessing cluster information of remote vertices
 - · Each process maintains a local copy of cluster centroids
 - Refinement
 - Visit local vertices in random order
 - Updating cluster centroids and ghost cells relax the synchronization
- Propagation Phase
 - Similar to initialization of clusters in the extracted graph
- Refinement of the entire graph
 - Same strategy as clustering of the extracted graph

Experimental Results

Experimental Setting & Dataset

- Sequential experiments
 - GEM vs. PMetis, KMetis (Metis), Graclus
 - Shared memory machine (AMD Opteron 2.6GHz CPU, 256GB memory)
- Parallel experiments
 - PGEM vs. ParMetis
 - Ranger at Texas Advanced Computing Center (TACC)
 - 3,936 machine nodes (4×4-core AMD Opteron CPU, 32GB memory)
- Dataset

Graph	No. of vertices	No. of edges
Flickr	1,994,422	21,445,057
LiveJournal	1,757,326	42,183,338
Myspace	2,086,141	45,459,079
Twitter (10M)	11,316,799	63,555,738
Twitter (50M)	51,161,011	1,613,892,592

Evaluation of GEM

- Quality of clusters
 - Higher percentage of within-cluster edges / lower normalized cut indicates better quality of clusters.

Evaluation of GEM

- Running Time
 - GEM is the fastest algorithm across all the datasets.
 - Twitter 10M: GEM (6 min.) vs. PMetis (30 min.) vs. KMetis (90 min.)
 - Twitter 50M: GEM (3 hrs.) vs. PMetis (14 hrs.) vs. KMetis (19 hrs.)

Evaluation of GEM

- Memory Consumption
 - PMetis and KMetis use the same coarsening strategy (as in Metis).
 - GEM directly extracts a subgraph from the original graph.
 - Multilevel algorithms gradually reduce the graph size by multilevel coarsening.

Evaluation of PGEM

- PGEM performs consistently better than ParMetis in terms of normalized cut, running time and speedup across all the datasets.
 - Quality of clusters

Evaluation of PGEM

• Running time & speedup on Flickr

 $\mathsf{Speedup} = \frac{\mathsf{Runtime} \; \mathsf{of} \; \mathsf{the} \; \mathsf{program} \; \mathsf{with} \; \mathsf{one} \; \mathsf{process}}{\mathsf{Runtime} \; \mathsf{with} \; p \; \mathsf{processes}}$

Evaluation of PGEM

- Running time & speedup on Twitter 10M
 - PGEM achieves a super-linear speedup.
 - In all cases, the speedup of ParMetis is less than 10.
 - The multilevel scheme is hard to be scaled to large number of processes.

Conclusions

GEM & PGEM

- GEM produces clusters of quality better than state-of-the-art clustering algorithms while it saves much time and memory.
- PGEM achieves significant scalability while producing high quality clusters.
- Future Research
 - Theoretical justification (can we theoretically show that extracted graph preserves structure of original graph).
 - Automatical detection of number of clusters.

References

- I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. *IEEE Trans. on Pattern Analysis* and Machine Intelligence, vol. 29, no. 11, pp. 1944-1957, 2007.
- G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. *Journal of Parallel and Distributed Computing*, vol. 48, pp. 96129, 1998.