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Introduction

Stochastic Blockmodel

Generative model
Expresses objects as a low dimensional representation Ui , Uj

Models the link probability of a pair of objects P(Aij) = f (Ui ,Uj ,θ)
e.g., latent class model, mixed membership stochastic blockmodel

Applications

Revealing structures in networks
(Overlapping) Clustering, Link prediction
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Introduction

Overlapping stochastic blockmodels

Objects have hard memberships in multiple clusters.

Contributions of this paper

Extend the overlapping stochastic blockmodel to bipartite graphs
Relevance selection mechanism
Make use of additionally available object features
Nonparametric Bayesian approach
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Background

Indian Buffet Process (IBP) (Griffiths et al. 2011)

N objects, K clusters, overlapping clustering U ∈ {0, 1}N×K .
Object: customer, cluster: dish
The first customer selects Poisson(α) dishes to begin with
Each subsequent customer n:

Selects an already selected dish k with probability
mk

n
Selects Poisson(α/n) new dishes
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The Proposed Model



Basic Model

Bipartite graph (N ×M binary adjacency matrix, |A| = N, |B| = M)

U ∼ IBP(αu)

V ∼ IBP(αv )

W ∼ Nor(0, σ2
w )

A ∼ Ber(σ(UWV>))

- IBP(α): IBP prior distribution,
Nor(0, σ2): Gaussian distribution,

- σ(x) = 1
1+exp(−x)

,

Ber(p): Bernoulli distribution,

- U ∈ {0, 1}N×K , V ∈ {0, 1}M×L:
cluster assignment matrices

P(Anm = 1) = σ(unWv>m)

= σ(
∑
k,l

unkWklvml)

- Wkl : the interaction strength between
two nodes due to their memberships in
cluster k and cluster l

P(Anm = 1) = σ(W12 +W13 +W32 +W33)
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Basic Model

Unipartite graph (A ∈ {0, 1}N×N)

U ∼ IBP(αu)

W ∼ Nor(0, σ2
w )

A ∼ Ber(σ(UWU>))

- IBP(α): IBP prior distribution,
Nor(0, σ2): Gaussian distribution,

- σ(x) = 1
1+exp(−x)

,

Ber(p): Bernoulli distribution,

- U ∈ {0, 1}N×K : cluster assignment matrix

P(Anm = 1) = σ(unWu>m)

= σ(
∑
k,l

unkWkluml)

P(Anm = 1) = σ(W12 +W13 +W32 +W33)
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Relevance Selection Mechanism

Motivation

In real-world networks, there may be some noisy objects (e.g., spammer)
May lead to bad parameter estimates

Maintain two random binary vectors RA ∈ {0, 1}N×1, RB ∈ {0, 1}M×1
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Relevance Selection Mechanism

Background noise link probability φ ∼ Bet(a, b)

If one or both objects n ∈ A and m ∈ B are irrelevant

- Anm is drawn from Ber(φ)

If both n and m are relevant,

- Anm is drawn from Ber(p) = Ber(σ(unWv>m))

φ ∼ Bet(a, b)

RA
n ∼ Ber(ρAn ), RB

m ∼ Ber(ρBm)

un ∼ IBP(αu) if RA
n = 1; zeros otherwise

vm ∼ IBP(αv ) if RB
m = 1, zeros otherwise

p = σ(unWv>m)

Anm ∼ Ber(pRA
n R

B
mφ1−RA

n R
B
m )
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Exploiting Pairwise Similarities

We may have access to side information

e.g., a similarity matrix between objects

The IBP does not consider the pairwise similarity information.

Customer n chooses an existing dish regardless of the similarity of this
customer with other customers.

Two objects n and m have a high pairwise similarity
⇒ un and um should also be similar.

Encourages a customer to select a dish if the customer has a high
similarity with all other customers who chose that dish.
Let the customer select many new dishes if the customer has low
similarity with previous customers.
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Exploiting Pairwise Similarities

Modify the sampling scheme in the IBP based generative model

The probability that object n gets membership in cluster k will be

proportional to
∑

n′ 6=n S
A
nn′un′k∑n

n′=1
SA
nn′

.∑n
n′=1 S

A
nn′ : effective total number of objects,∑

n′ 6=n S
A
nn′un′k : effective number of objects (other than n) that

belong to cluster k

- IBP:

∑
n′ 6=n un′k

n
=

mk

n

The number of new clusters for object n is given by
Poisson(α/

∑n
n′=1 S

A
nn′).

If the object n has low similarities with the previous objects,
encourage it more to get memberships in its own new clusters

- IBP: Poisson(α/n)
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The Final Model

ROCS (Relevance-based Overlapping Clustering with
Similarity-based-smoothing)

φ ∼ Bet(a, b)

ρAn ∼ Bet(c , d), ρBm ∼ Bet(e, f )

RA
n ∼ Ber(ρAn ), RB

m ∼ Ber(ρBm)

un ∼ SimIBP(αu,S
A)

vm ∼ SimIBP(αv ,S
B)

p = σ(unWv>m)

Anm ∼ Ber(pRA
n R

B
mφ1−RA

n R
B
m )

- SimIBP(αu ,SA): similarity information
augmented variant of the IBP

For inference, we use MCMC (Gibbs sampling)
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Experiments



Experiments

Tasks

The correct number of clusters
Identify relevant objects
Use pairwise similarity information
Overlapping clustering
Link prediction

Baselines

Overlapping Clustering using Nonnegative Matrix Factorization
(OCNMF) (Psorakis et al. 2011)

Kernelized Probabilistic Matrix Factorization (KPMF) (Zhou et al. 2012)

Bayesian Community Detection (BCD) (Mørup et al. 2012)

Latent Feature Relational Model (LFRM) (Miller et al. 2009)
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Experiments

Synthetic Data

30 relevant objects, 20 irrelevant objects
Three overlapping clusters
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Experiments

Overlapping clustering
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Experiments

Table 1: Link Prediction on Synthetic Data

Method 0-1 Test Error (%) AUC

OCNMF 44.82 (±12.59) 0.7164 (±0.1987)

KPMF 39.70 (±1.78) 0.6042 (±0.0517)

BCD 20.05 (±1.49) 0.8504 (±0.0197)

LFRM 9.59 (±0.36) 0.8619 (±0.0374)

ROCS 9.05 (±0.42) 0.8787 (± 0.0303)

Results Summary

ROCS perfectly identifies relevant/irrelevant objects
ROCS identifies the correct number of clusters
For link prediction task, ROCS is better than other methods in terms of
both 0-1 test error and AUC score.
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Experiments

Facebook Data

An ego-network in Facebook (228 nodes)
User profile (e.g., age, gender, etc.) – select 92 features.
Known number of clusters: 14

Table 2: Link Prediction on Facebook Data

Method 0-1 Test Error (%) AUC

OCNMF 36.58 (±19.74) 0.7215 (±0.1666)

KPMF 35.76 (±2.76) 0.7013 (±0.0174)

BCD 13.59 (±0.31) 0.9187 (±0.0242)

LFRM 12.38 (±2.82) 0.9156 (±0.0134)

ROCS 11.96 (±1.44) 0.9388 (± 0.0156)

BCD overestimated the number of clusters (20-22 across multiple runs).

LFRM and ROCS almost correctly inferred the ground truth number of clusters
(13-15 across multiple runs).
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Experiments

Drug-Protein Interaction Data

Bipartite graph (200 drug molecules, 150 target proteins)
Drug-drug similarity matrix, Protein-protein similarity matrix

Table 3: Link Prediction on Drug-Protein Interaction Data

Method 0-1 Test Error (%) AUC

KPMF 16.65 (± 0.36) 0.8734 (± 0.0133)

LFRM 2.75 (± 0.04) 0.9032 (± 0.0156)

ROCS 2.31 (± 0.06) 0.9276 (± 0.0142)

OCNMF and BCD are not applicable for bipartite graphs.

LFRM here denotes ROCS without similarity information.

KPMF takes into account the similarity information but does not assume
overlapping clustering.
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Experiments

Lazega Lawyers Data

Directed graph, social networks (71 partners)
Each entry has features (gender, office-location, age, etc.)

Table 4: Link Prediction on Lazega-Lawyers Data

Method 0-1 Test Error (%) AUC

OCNMF 35.36 (±20.71) 0.6388 (±0.1527)

KPMF 34.69 (±1.13) 0.7203 (±0.0229)

BCD 16.58 (±0.56) 0.7876 (±0.0168)

LFRM 14.05 (± 2.04) 0.8025 (± 0.0205)

ROCS 12.98 (± 0.32) 0.8248 (± 0.01642)

Even weak similarity information can yield reasonable improvements in the
prediction accuracy
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Conclusions



Conclusions

ROCS: a flexible model for modelling unipartite/bipartite graphs.
Each object can belong to multiple clusters (hard membership).
Nonparametric Bayesian approach.
Irrelevant objects can be dealt with in a principled manner.
Pairwise similarity between objects can be exploited to regularize the
cluster memberships of objects.
Future work: make the model scalable.
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