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• Propose a general framework for subgraph reasoning models
• Derive their stability w.r.t. the perturbations of the subgraph structure

• Introduce RTMD designed for subgraph reasoning models
• Use RTMD to compute the stability of subgraph reasoning models

• Analyze the generalization bound of the subgraph reasoning model
• Discuss the impact of stability on their generalization capability

• Empirically validate our theoretical findings on real-world KGs
• Examine how the stability impacts generalization capability

Main Contributions
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Knowledge Graph (KG)
• Represents real-world knowledge by relationships between entities
Inductive Knowledge Graph Completion (Inductive KGC)
• Predicts missing triplets within knowledge graphs
• KG that appears during inference differs from the one used for training

Inductive Knowledge Graph Completion

• Determines the validity of a triplet using the subgraph
• Extracts a subgraph associated with a target triplet
• Relabels the entities within the subgraph
• Computes a score of the subgraph through message-passing

Subgraph Reasoning Model

Stability
• Consistency of the model’s output
• Measured by Lipschitz constant

Theoretical Properties

• Decomposing the subgraph reasoning model into two parts
• Subgraph Extractor / Subgraph Message Passing Neural Network

Subgraph Extractor
• A non-parametric function that maps a triplet to a subgraph 
• Generates an initial embedding for each entity
Subgraph Message Passing Neural Network (SMPNN)
• Generalizes the scoring functions that utilize message-passing

General Framework for Subgraph Reasoning Model
Lipschitz continuity of subgraph reasoning models
• A score difference is bounded by an RTMD between subgraphs
The upper bound of the Lipschitz constant
• Bounded by the Lipschitz constant of each function of the SMPNNs.

Stability of Subgraph Reasoning Model

• By appropriately configuring the subgraph extractor and SMPNN, 
well-known subgraph reasoning models can be represented.

Instantiation of Subgraph Reasoning Models

Generalization Bound of Subgraph Reasoning Models

Experiments
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Generalization Capability
• Performance discrepancy between 

training and test data 
• Measured by generalization bounds

Domain Range Risk

Model Complexity

Generalization Error

Risk on test data
Risk on training data
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Relational Computation Tree
• Modeling how SMPNNs process the subgraph structures
Relational Tree Distance (RTD)
• Difference between relational computation trees

Relational Tree Mover’s Distance (RTMD)
• A metric to quantify the difference between subgraphs

Relational Tree Mover’s Distance (RTMD)
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Theorem 4.5 Given 𝐺𝐺tr = 𝒱𝒱tr,ℛ,ℱtr ∪ 𝒯𝒯tr , 𝐺𝐺inf = 𝒱𝒱inf,ℛ,ℱinf ∪ 𝒯𝒯inf , and an SMPNN 𝑓𝑓𝒘𝒘 with 𝐿𝐿 layers, if the message, 
aggregation, update, global-readout, and readout function of 𝑓𝑓𝒘𝒘 are Lipschitz continuous, then 𝑓𝑓𝒘𝒘 is Lipschitz continuous 
with the Lipschitz constant 𝜂𝜂𝑓𝑓 and the following holds:
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where 1 ≤ 𝑙𝑙 ≤ 𝐿𝐿, and 𝑨𝑨,𝑩𝑩,𝑪𝑪,𝑫𝑫 are the Lipschitz constants of the corresponding function.

Expected Risk Discrepancy
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Theorem 5.3 Given 𝐺𝐺tr, 𝐺𝐺inf, and a subgraph reasoning model with a subgraph extractor 𝑔𝑔 and an SMPNN 𝑓𝑓𝒘𝒘, for any 
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is the expected risk discrepancy between 𝐺𝐺tr and 𝐺𝐺inf, and KL 𝒬𝒬|𝒫𝒫 is a KL divergence of 𝒬𝒬 from 𝒫𝒫.

t-SNE plot based on RTMD
Classification acc: 0.8205

RTMD is a valid metric
for quantifying the distance 
between subgraphs

SMPNN is Lipschitz continuous 
with respect to the RTMD

A more stable subgraph 
reasoning model tends to exhibit 
better generalization capability

Compare score differences and RTMD
Compare stability and gen. error

Corr: -0.5759, p-value: 0.00019

Generalization Bound of Subgraph Reasoning Model
• Depends on the KL divergence and expected risk discrepancy

Expected Risk Discrepancy
• Discrepancy between the expected risks measured on each KG

Upper Bound of the Expected Risk Discrepancy
• As the stability increases, the expected risk discrepancy decreases

Theorem 5.5 Given 𝐺𝐺tr, 𝐺𝐺inf, and a subgraph reasoning model with a subgraph 
extractor 𝑔𝑔 and an SMPNN 𝑓𝑓𝒘𝒘 with stability 𝐶𝐶𝑓𝑓, for any prior distribution 𝒫𝒫 and 
posterior distribution 𝒬𝒬 on the parameter space of 𝑓𝑓𝒘𝒘, and 𝜆𝜆 > 0, the following holds:

𝐷𝐷 𝒫𝒫, 𝜆𝜆, 𝛾𝛾 ≤ 𝜆𝜆 max 0,
𝒯𝒯tr
𝒯𝒯inf

− 1 +
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Empirically validate our theoretical findings
• Conduct experiments on real-world KGs (FB15K237, WN18RR, NELL-995)
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