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Main Contributions General Framework for Subgraph Reasoning Model Stability of Subgraph Reasoning Model
* Propose a general framework for subgraph reasoning models  Decomposing the subgraph reasoning model into two parts Lipschitz continuity of subgraph reasoning models
* Derive their stability w.r.t. the perturbations of the subgraph structure « Subgraph Extractor / Subgraph Message Passing Neural Network » A score difference is bounded by an RTMD between subgraphs
* Introduce RTMD designed for subgraph reasoning models The upper bound of the Lipschitz constant
* Use RTMD to compute the stability of subgraph reasoning models —) —) Final » Bounded by the Lipschitz constant of each function of the SMPNNSs.
 Analyze the generalization bound of the subgraph reasoning model (5 Sub Subaranh score Theorem 4.5 Given Gy, = (Ves, R, Fos U Ter), Gine = (Ving, R, Fing U i), and an SMPNN £, with L layers, if the message,
_ _ o _ ] ] o graph grap ) fw(S ) aggregation, update, global-readout, and readout function of f,, are Lipschitz continuous, then f,, is Lipschitz continuous
* Discuss the impact of stability on their generalization capability Extractor Message Passing with the Lipschitz constant n, and the following holds:
. ] ] o Original Knowledge Graph Subgraph Neural Network s s
 Empirically validate our theoretical findings on real-world KGs G=W.RFUT) S = (Vs, &, R, INITs, (h, ¢, 1)) Ny < ]_[n(” ifot) =k—=1,  nf< (L+1)Hn(” if 0(k) = 0
« Examine how the stability impacts generalization capability Subgraph Extractor n® = max (A(;d+dmaxB§QdA§2gB$2g B paAsggAmse |R|ZB§QdA;2gcéf2g IRI2B o ASge Drngr 1)
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where 1 <[ < L, and A, B, C, D are the Lipschitz constants of the corresponding function.

* A non-parametric function that maps a triplet to a subgraph
» Generates an initial embedding for each entity

Knowledge Graph (KG) Subgraph Message Passing Neural Network (SMPNN) Generalization Bound of Subgraph Reasoning Models
* Represents real-world knowledge by relationships between entities » Generalizes the scoring functions that utilize message-passing

Inductive Knowledge Graph Completion (Inductive KGC) x¥ (v) = INIT, .

* Predicts missing triplets within knowledge graphs
« KG that appears during inference differs from the one used for training x P () = UPDU)( wm)(v),AGGU) (Jvr;”(v))) -
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Inductive Knowledge Graph Completion

Expected Risk Discrepancy
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.. ° i i i Theorem 5.3 Given G, Gi,s, and a subgraph reasoning model with a subgraph extractor g and an SMPNN f,,,, for any
Trammg Inference By approprlately conflgurlng the SUbgraph eXtraCtor and SM PN N’ prior distribution  and postiarior distribution @ on the parameter space of f,, constructed f)gy adding random noise w to
well-known subgraph reasoning models can be represented. w such that P (max (ma}| (96 ) = fur(9 G )], 1% |fi(9 Gins: ) = (9 G, e))|)), and y, 1 > 0, the
Subgraph Reasoning Model Models | Subgraph MSG AGG UPD GRD RD following holds with probabilty atleast 1-5 o
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’ Determ INES the Valld Ity Of a trl plet USIng the Su bg raph SUbgraph where D (?, A, g) is the expected risk discrepancy between G and G;,, and KL(Q|P) is a KL divergence of Q from P.

« Extracts a subgraph associated with a target triplet NBFNet Union | TransE / DistMult/ RotatE Sum/Mean/PNA Linear - MLP _ _

. Relabels the entities within the subgraph Upper Bound of the Expected Risk Discrepancy

: RED-GNN | - ynijon Attention Sum Linear -  Linear * As the stability increases, the expected risk discrepancy decreases
« Computes a score of the subgraph through message-passing
located in Theorem 5.5 Given Gy, Ginr, anq a subgraph reasoning modgl vyith a subgraph
"[ . ] R I t. I T M y D . t RTM D extrac’For g an.d ar\ SMPNN f,, with stability C¢, for any prior distribution P gnd
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Th tical P " » Difference between relational computation trees V) V) V) Empirically validate our theoretical findings
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P /E%X /é; _INT@) - @)t ety 1 +11l+p  * Conduct experiments on real-world KGs (FB15K237, WN18RR, NELL-995)
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» Consistency of the model’'s output < Performance discrepancy between +w(l)OTRTD<{ AAA A L. Soshds ’ S S
» Measured by Lipschitz constant training and test data ) ‘ ' el * D - o -
Relational Tree Mover’s Distance (RTMD) ‘'« ¥ o« 5. S :
. Measured by generalization bounds A metric ¢ (5 the diff bet b h ,.;0-\ S L. O o
Domain Range RISk —Elsllzontestdatad metric 10 quantity the ailfrerence peitween subpgrapns ﬁ x ) wl e
P = Risk on training data 16—.2 - - - - - 175 -150 125 <100 <75 <50 25 00
: )'/\'_. ’.{_/_.\ —> /N /\ A A Distance (log scale) log(Stability)
« \ \‘/ A ‘ t-SNE plot based on RTMD _ Compare stability and gen. error
- — i / RTDI + RTDI n OTRTDI Classification acc: 0.8205 Compare score differences and RTMD Corr: -0.5759, p-value: 0.00019
I Generalization Error ‘{ } /1\ / \ A A ]IcRTMD ist. fa .valiﬂ mde_t:ic S!\:IhPNN IS ![_:pstrc]:hilgz_rcli/logtinuous A more_stable ;ull?{gre(\jpr; .
R L —) A A or quantifying the distance  with respect to the reasoning model tends to exhibi
Model Complexity between subgraphs better generalization capability
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