Stability and Generalization Capability of Subgraph Reasoning Models for Inductive Knowledge Graph Completion

KAIST

Main Contributions

- Propose a general framework for subgraph reasoning models • Derive their stability w.r.t. the perturbations of the subgraph structure
- Introduce RTMD designed for subgraph reasoning models • Use RTMD to compute the stability of subgraph reasoning models
- Analyze the **generalization bound** of the subgraph reasoning model
- Discuss the impact of **stability** on their **generalization capability**
- Empirically validate our theoretical findings on real-world KGs
- Examine how the stability impacts generalization capability

Inductive Knowledge Graph Completion

Knowledge Graph (KG)

- Represents real-world knowledge by relationships between entities Inductive Knowledge Graph Completion (Inductive KGC)
- Predicts missing triplets within knowledge graphs
- KG that appears during inference differs from the one used for training Vienna

Subgraph Reasoning Model

- Determines the validity of a triplet using the subgraph
 - Extracts a subgraph associated with a target triplet
 - **Relabels the entities** within the subgraph

Range

• Computes a score of the subgraph through message-passing

Theoretical Properties

Stability

Domain

- **Consistency** of the model's output
- Measured by Lipschitz constant

Generalization Capability

 Performance discrepancy between training and test data

* Corresponding Author (jjwhang@kaist.ac.kr)

Minsung Hwang, Jaejun Lee, and Joyce Jiyoung Whang* School of Computing, KAIST

The 42nd International Conference on Machine Learning (ICML 2025)

General Framework for Subgraph Reasoning Model

- flower Pacific Dogwood anguage language
- False triplet

- **Generalization Error** Model Complexity

- Subgraph Extractor / Subgraph Message Passing Neural Network Subgrap Subgrap **Extractor** Original Knowledge Graph **Neural Network** Subgraph $G = (\mathcal{V}, \mathcal{R}, \mathcal{F} \cup \mathcal{T})$ $S = (\mathcal{V}_S, \mathcal{E}_S, \mathcal{R}, \text{INIT}_S, (h, q, t))$ Subgraph Extractor • A non-parametric function that maps a triplet to a subgraph
- Generates an **initial embedding** for each entity **Subgraph Message Passing Neural Network (SMPNN)**
- Generalizes the scoring functions that utilize message-passing $x_{S}^{(0)}(v) = \text{INIT}_{S}$
- $\mathcal{M}_{S}^{(l)}(v) = \{ \{ \mathsf{MSG}^{(l)}\left(\boldsymbol{x}_{S}^{(l-1)}(u), \boldsymbol{x}_{S}^{(l-1)}(v), r, q \right) \mid (r, u) \in \mathcal{N}_{S}(v) \} \}$ $\boldsymbol{x}_{S}^{(l)}(v) = \text{UPD}^{(l)}\left(\boldsymbol{x}_{S}^{(\theta(l))}(v), \text{AGG}^{(l)}\left(\mathcal{M}_{S}^{(l)}(v)\right)\right)$
 - $f_{w}(S) = \text{RD}\left(\boldsymbol{x}_{S}^{(L)}(h), \boldsymbol{x}_{S}^{(L)}(t), \text{GRD}\left(\{\{\boldsymbol{x}_{S}^{(L)}(u) | u \in \mathcal{V}_{S}\}\}\right), q\right)$

Instantiation of Subgraph Reasoning Models

By appropriately configuring the subgraph extractor and SMPNN,

well-known subgraph reasoning models can be represented.							
	Models	Subgraph	MSG	AGG	UPD	GRD	RD
	GralL (ICML 2020)	Enclosing subgraph	Attention	Sum	Linear	Mean	Linear
	NBFNet (NeurIPS 2021)	Union	TransE / DistMult / RotatE	Sum / Mean / PNA	Linear	-	MLP
	RED-GNN (WWW 2022)	Union	Attention	Sum	Linear	-	Linear

Relational Tree Mover's Distance (RTMD)

Relational Computation Tree Modeling how SMPNNs process the subgraph structures

- **Relational Tree Distance (RTD)**
- Difference between relational computation trees
- RTD **Relational Tree Mover's Distance (RTMD)** • A metric to quantify the difference between subgraphs + OT_{RTD} RTD + RTD

GitHub: https://github.com/bdi-lab

• **Decomposing the subgraph reasoning model** into two parts

Stability of Subgraph Reasoning Model

• A score difference is bounded by an RTMD between subgraphs

The upper bound of the Lipschitz constant • Bounded by the Lipschitz constant of each function of the SMPNNs.

- with the Lipschitz constant η_f and the following holds:

Generalization Bound of Subgraph Reasoning Models

Expected Risk Discrepancy

Expected Risk Discrepancy

Generalization Bound of Subgraph Reasoning Model Depends on the KL divergence and expected risk discrepancy

Theorem 5.3 Given G_{tr} , G_{inf} , and a subgraph reasoning model with a subgraph extractor g and an SMPNN f_w , for any prior distribution \mathcal{P} and posterior distribution Q on the parameter space of f_w constructed by adding random noise \ddot{w} to w such that $\mathbb{P}\left(\max\left(\max_{e\in\mathcal{T}_{tr}}|f_{\widetilde{w}}(g(G_{tr},e))-f_{w}(g(G_{tr},e))|,\max_{e\in\mathcal{T}_{inf}}|f_{\widetilde{w}}(g(G_{inf},e))-f_{w}(g(G_{inf},e))|\right)\right)$, and $\gamma,\lambda>0$, the following holds with probability at least $1 - \delta$

 $\mathcal{L}_{G_{\text{inf}}}(f_{w},0) \leq \hat{\mathcal{L}}_{G_{\text{tr}}}(f_{w},\gamma) + \frac{1}{\lambda} \left(2\text{KL}(\mathcal{Q}|\mathcal{P}) + \ln\frac{4}{\delta} + \frac{\lambda^{2}}{4|\mathcal{T}_{\text{tr}}|} + D\left(\mathcal{P},\lambda,\frac{\gamma}{2}\right) \right)$

where $D\left(\mathcal{P}, \lambda, \frac{\gamma}{2}\right)$ is the expected risk discrepancy between G_{tr} and G_{inf} , and $KL(\mathcal{Q}|\mathcal{P})$ is a KL divergence of \mathcal{Q} from \mathcal{P} .

Upper Bound of the Expected Risk Discrepancy • As the stability increases, the expected risk discrepancy decreases

Theorem 5.5 Given G_{tr} , G_{inf} , and a subgraph reasoning model with a subgraph extractor g and an SMPNN f_w with stability C_f , for any prior distribution \mathcal{P} and posterior distribution Q on the parameter space of f_w , and $\lambda > 0$, the following holds: $D(\mathcal{P},\lambda,\gamma) \leq \lambda \left(\max\left(0,\frac{|\mathcal{T}_{tr}|}{|\mathcal{T}_{inf}|} - 1\right) + \frac{20T_{RTMD}(\psi(\mathcal{T}_{inf},\mathcal{T}_{tr}))}{\gamma C_{f} \max(|\mathcal{T}_{inf}|,|\mathcal{T}_{tr}|)} \right)$

Experiments

Empirically validate our theoretical findings • Conduct experiments on real-world KGs (FB15K237, WN18RR, NELL-995)

t-SNE plot based on RTMD Classification acc: 0.8205

RTMD is a valid metric for quantifying the distance between subgraphs

Compare score differences and RTMD

SMPNN is Lipschitz continuous with respect to the RTMD

Lipschitz continuity of subgraph reasoning models

Theorem 4.5 Given $G_{tr} = (\mathcal{V}_{tr}, \mathcal{R}, \mathcal{F}_{tr} \cup \mathcal{T}_{tr})$, $G_{inf} = (\mathcal{V}_{inf}, \mathcal{R}, \mathcal{F}_{inf} \cup \mathcal{T}_{inf})$, and an SMPNN f_w with *L* layers, if the message, aggregation, update, global-readout, and readout function of f_w are Lipschitz continuous, then f_w is Lipschitz continuous

 $\eta^{(l)} \text{ if } \theta(k) = k - 1, \qquad \eta_f \le (L+1) \qquad \eta^{(l)} \text{ if } \theta(k) = 0$

 $\eta^{(l)} = \max\left(A_{\text{upd}}^{(l)} + d_{\max}B_{\text{upd}}^{(l)}A_{\text{agg}}^{(l)}B_{\text{msg}}^{(l)}, B_{\text{upd}}^{(l)}A_{\text{agg}}^{(l)}A_{\text{msg}}^{(l)}, |\mathcal{R}|^2 B_{\text{upd}}^{(l)}A_{\text{agg}}^{(l)}C_{\text{msg}}^{(l)}, |\mathcal{R}|^2 B_{\text{upd}}^{(l)}A_{\text{agg}}^{(l)}D_{\text{msg}}^{(l)}, 1\right)$

 $\eta^{(L+1)} = \max\left(A_{\mathrm{rd}}, B_{\mathrm{rd}}, C_{\mathrm{rd}}A_{\mathrm{grd}}, \frac{|\mathcal{N}| \mathcal{D}_{\mathrm{rd}}}{2 + \max(|\mathcal{V}_{\mathrm{tr}}|, |\mathcal{V}_{\mathrm{tr}}|)}\right)$

 $1 \le l \le L$, and A, B, C, D are the Lipschitz constants of the corresponding function.

• **Discrepancy** between the expected risks measured on each KG

 $D(\mathcal{P},\lambda,\gamma) = \ln\left(\mathbb{E}_{\mathbf{w}\sim\mathcal{P}}\left[\exp\left(\lambda\left(\mathcal{L}_{G_{\mathrm{tr}}}\left(f_{\mathbf{w}},\frac{\gamma}{2}\right) - \mathcal{L}_{G_{\mathrm{inf}}}(f_{\mathbf{w}},\gamma)\right)\right)\right)\right)$

A more stable subgraph reasoning model tends to exhibit better generalization capability

Lab Homepage: https://bdi-lab.kaist.ac.kr