Non-exhaustive, Overlapping Clustering via Low-Rank Semidefinite Programming

> Yangyang Hou^{1*}, Joyce Jiyoung Whang^{2*} David F. Gleich¹ Inderjit S. Dhillon² ¹Purdue University ²The University of Texas at Austin (* first authors)

ACM SIGKDD Conference on Knowledge Discovery and Data Mining Aug. 10 – 13, 2015.

Contents

- Non-exhaustive, Overlapping Clustering
 - NEO-K-Means Objective
 - NEO-K-Means Algorithm
- Semidefinite Programming (SDP) for NEO-K-Means
- Low-Rank SDP for NEO-K-Means
- Experimental Results
- Conclusions

Clustering

- Clustering: finding a set of cohesive data points
- Traditional disjoint, exhaustive clustering (e.g., k-means)
 - Every single data point is assigned to exactly one cluster.
- Non-exhaustive, overlapping clustering
 - A data point is allowed to be outside of any cluster.
 - Clusters are allowed to overlap with each other.

NEO-K-Means (Non-Exhaustive, Overlapping K-Means)¹

• The NEO-K-Means objective function

• Overlap and non-exhaustiveness - handled in a unified framework

$$\min_{U} \sum_{j=1}^{k} \sum_{i=1}^{n} u_{ij} \|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2}, \text{ where } \mathbf{m}_{j} = \frac{\sum_{i=1}^{n} u_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ij}}$$
s.t. $trace(U^{T}U) = (1 + \alpha)n, \sum_{i=1}^{n} \mathbb{I}\{(U\mathbf{1})_{i} = 0\} \le \beta n.$

$$U = \begin{bmatrix} c_1 & c_2 & c_3 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ x_2 & U^T & U = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \end{bmatrix}$$

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (4/22)

¹J. J. Whang, I. S. Dhillon, and D. F. Gleich. Non-exhaustive, overlapping k-means. SDM, 2015.

NEO-K-Means (Non-Exhaustive, Overlapping K-Means)¹

• Normalized Cut for Overlapping Community Detection

 Weighted Kernel NEO-K-Means objective is equivalent to the extended normalized cut objective.

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (5/22)

¹J. J. Whang, I. S. Dhillon, and D. F. Gleich. Non-exhaustive, overlapping k-means. SDM, 2015.

NEO-K-Means (Non-Exhaustive, Overlapping K-Means)¹

- The NEO-K-Means Algorithm is a simple iterative algorithm that monotonically decreases the NEO-K-Means objective.
 - $\alpha = 0, \beta = 0$: identical to the standard *k*-means algorithm
- Example $(n = 20, \alpha = 0.15, \beta = 0.05)$
 - Assign $n \beta n$ (=19) data points to their closest clusters.
 - Make $\beta n + \alpha n$ (=4) assignments by taking minimum distances.

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (6/22)

¹J. J. Whang, I. S. Dhillon, and D. F. Gleich. Non-exhaustive, overlapping k-means. SDM, 2015.

Motivation

• NEO-K-Means Algorithm

- Fast iterative algorithm
- Susceptible to initialization
- Can be trapped in local optima

• LRSDP initialization allows the NEO-K-Means algorithm to consistently produce a reasonable clustering structure.

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (7/22)

Overview

• Goal: more accurate and more reliable solutions than the iterative NEO-K-Means algorithm by paying additional computational cost

Background: Semidefinite Programs (SDPs)

- Semidefinite Programming (SDP)
 - Convex problem (ightarrow globally optimized via a variety of solvers)
 - The number of variables is quadratic in the number of data points.
 - Problems with fewer than 100 data points
- Low-rank SDP
 - Non-convex (ightarrow locally optimized via an augmented Lagrangian method)
 - Problems with tens of thousands of data points

Canonical SDP maximize trace(CX) subject to $\mathbf{X} \succeq 0, \mathbf{X} = \mathbf{X}^T$, trace($\mathbf{A}_i \mathbf{X}$) = b_i $i = 1, \dots, m$ Low-rank SDP maximize trace(CYY^T) subject to $\mathbf{Y} : n \times k$ trace($\mathbf{A}_i \mathbf{Y} \mathbf{Y}^T$) = b_i $i = 1, \dots, m$

NEO-K-Means as an SDP

• Three key variables to model the assignment structure U

- Co-occurrence matrix $\mathbf{Z} = \sum_{c=1}^{k} \frac{\mathbf{W} \mathbf{u}_{c} (\mathbf{W} \mathbf{u}_{c})^{T}}{\mathbf{u}_{c}^{T} \mathbf{W} \mathbf{u}_{c}}$
- f: overlap, g: non-exhaustiveness

SDP-like Formulation for NEO-K-Means

- NEO-K-Means with a discrete assignment matrix
 - Non-convex, combinatorial problem

$$\begin{array}{ll} \underset{\mathbf{Z}, \mathbf{f}, \mathbf{g}}{\text{maximize}} & \operatorname{trace}(\mathbf{K}\mathbf{Z}) - \mathbf{f}^T \mathbf{d} \\ \\ \underset{\mathbf{Z}, \mathbf{f}, \mathbf{g}}{\text{subject to}} & \\ & \operatorname{trace}(\mathbf{W}^{-1}\mathbf{Z}) = k, \quad (a) \\ & Z_{ij} \geq 0, \quad (b) \\ & \mathbf{Z} \succeq 0, \mathbf{Z} = \mathbf{Z}^T \quad (c) \\ \end{array} & \\ & \mathbf{Z} \overset{}{=} 0, \mathbf{Z} = \mathbf{Z}^T \quad (c) \\ & \mathbf{Z} \overset{}{=} \mathbf{W} \mathbf{f}, \quad (d) \\ & \mathbf{e}^T \mathbf{f} = (1 + \alpha)n, \quad (e) \\ & \mathbf{e}^T \mathbf{g} \geq (1 - \beta)n, \quad (f) \\ & \mathbf{f} \geq \mathbf{g}, \quad (g) \\ \end{array} & \\ & \\ & \operatorname{rank}(\mathbf{Z}) = k, \quad (h) \\ & \mathbf{f} \in \mathcal{Z}_{\geq 0}^n, \mathbf{g} \in \{0, 1\}^n. \quad (i) \\ \end{array} & \\ \end{array}$$

SDP for NEO-K-Means

- Convex relaxation of NEO-K-Means
 - Any local optimal solution must be a global solution.

$$\begin{array}{ll} \underset{\mathbf{Z}, \mathbf{f}, \mathbf{g}}{\text{maximize}} & \operatorname{trace}(\mathbf{K}\mathbf{Z}) - \mathbf{f}^{T}\mathbf{d} \\ \\ \text{subject to} & \operatorname{trace}(\mathbf{W}^{-1}\mathbf{Z}) = k, \quad (a) \\ Z_{ij} \geq 0, & (b) \\ \mathbf{Z} \succeq 0, \mathbf{Z} = \mathbf{Z}^{T} & (c) \\ \end{array} & \begin{array}{l} \text{Z must arise from} \\ \text{an assignment matrix} \\ \mathbf{Z} \mathbf{e} = \mathbf{W}\mathbf{f}, & (d) \\ \mathbf{e}^{T}\mathbf{f} = (1 + \alpha)n, & (e) \\ \mathbf{e}^{T}\mathbf{g} \geq (1 - \beta)n, & (f) \\ \mathbf{f} \geq \mathbf{g}, & (g) \\ \end{array} & \begin{array}{l} \text{Overlap \&} \\ \text{non-exhaustiveness} \\ \text{constraints} \\ \end{array} \\ \\ \\ \text{Relaxation} \end{array}$$

Low-Rank SDP for NEO-K-Means

- Low-Rank SDP
 - Low-rank factorization of **Z**: **YY**^T (**Y**: $n \times k$, non-negative)
 - s, r: slack variables
 - · Lose convexity but only requires linear memory

$$\begin{array}{ll} \underset{\mathbf{Y},\mathbf{f},\mathbf{g},\mathbf{s},r}{\text{minimize}} & \mathbf{f}^T \mathbf{d} - \text{trace}(\mathbf{Y}^T \mathbf{K} \mathbf{Y}) \\ \text{subject to} & k = \text{trace}(\mathbf{Y}^T \mathbf{W}^{-1} \mathbf{Y}) \\ & 0 = \mathbf{Y} \mathbf{Y}^T \mathbf{e} - \mathbf{W} \mathbf{f} \\ & 0 = \mathbf{e}^T \mathbf{f} - (1 + \alpha) n \\ & 0 = \mathbf{f} - \mathbf{g} - \mathbf{s} \\ & 0 = \mathbf{e}^T \mathbf{g} - (1 - \beta) n - r \\ \hline & Y_{ij} \ge 0, \mathbf{s} \ge 0, r \ge 0 \\ & 0 \le \mathbf{f} \le k \mathbf{e}, 0 \le \mathbf{g} \le 1 \end{array}$$

Solving the NEO-K-Means Low-Rank SDP

- LRSDP: optimize the NEO-K-Means Low-Rank SDP
- Augmented Lagrangian method: minimizing an augmented Lagrangian of the problem that includes
 - Current estimate of the Lagrange multipliers
 - Penalty term that derives the solution towards the feasible set

$$\mathcal{L}_{\mathcal{A}}(\mathbf{Y}, \mathbf{f}, \mathbf{g}, \mathbf{s}, r; \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\gamma}, \sigma) = \underbrace{\mathbf{f}^{T} \mathbf{d} - \operatorname{trace}(\mathbf{Y}^{T} \mathbf{K} \mathbf{Y})}_{\text{the objective}} - \lambda_{1}(\operatorname{trace}(\mathbf{Y}^{T} \mathbf{W}^{-1} \mathbf{Y}) - k) + \frac{\sigma}{2}(\operatorname{trace}(\mathbf{Y}^{T} \mathbf{W}^{-1} \mathbf{Y}) - k)^{2} - \boldsymbol{\mu}^{T}(\mathbf{Y} \mathbf{Y}^{T} \mathbf{e} - \mathbf{W} \mathbf{f}) + \frac{\sigma}{2}(\mathbf{Y} \mathbf{Y}^{T} \mathbf{e} - \mathbf{W} \mathbf{f})^{T}(\mathbf{Y} \mathbf{Y}^{T} \mathbf{e} - \mathbf{W} \mathbf{f}) - \lambda_{2}(\mathbf{e}^{T} \mathbf{f} - (1 + \alpha)n) + \frac{\sigma}{2}(\mathbf{e}^{T} \mathbf{f} - (1 + \alpha)n)^{2} - \boldsymbol{\gamma}^{T}(\mathbf{f} - \mathbf{g} - \mathbf{s}) + \frac{\sigma}{2}(\mathbf{f} - \mathbf{g} - \mathbf{s})^{T}(\mathbf{f} - \mathbf{g} - \mathbf{s}) - \lambda_{3}(\mathbf{e}^{T} \mathbf{g} - (1 - \beta)n - r) + \frac{\sigma}{2}(\mathbf{e}^{T} \mathbf{g} - (1 - \beta)n - r)^{2}$$

Algorithmic Validation

• Comparison of SDP and LRSDP

- LRSDP is roughly an order of magnitude faster than CVX.
- The objective value are different in light of the solution tolerances.
- dolphins ¹: 62 nodes, 159 edges, les miserables ²: 77 nodes, 254 edges

		Objective value		Run time	
		SDP	LRSDP	SDP	LRSDP
	k=2, α=0.2, β=0	-1.968893	-1.968329	107.03 secs	2.55 secs
dolphing	$k=2, \alpha=0.2, \beta=0$ -1.96093 -1.960229 107.05 secs $k=2, \alpha=0.2, \beta=0.05$ -1.969080 -1.968128 56.99 secs $k=3, \alpha=0.3, \beta=0$ -2.913601 -2.915384 160.57 secs $k=3, \alpha=0.3, \beta=0.05$ -2.921634 -2.92252 71.83 secs	2.96 secs			
dolphins		-2.915384	160.57 secs	5.39 secs	
	k=3, α =0.3, β =0.05	-2.921634	-2.922252	71.83 secs	8.39 secs
	k=2, α=0.2, β=0	-1.937268	-1.935365	453.96 secs	7.10 secs
les miserables	k=2, α =0.3, β =0	-1.949212	-1.945632	447.20 secs	10.24 secs
	$k{=}3$, $\alpha{=}0.2$, $\beta{=}0.05$	-2.845720	-2.845070	261.64 secs	13.53 secs
	k=3, α =0.3, β =0.05	-2.859959	-2.859565	267.07 secs	19.31 secs

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (15/22)

¹D. Lusseau et al., Behavioral Ecology and Sociobiology, 2003.

²D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, 1993.

Rounding Procedure & Practical Improvements

- Problem \rightarrow Relaxation \rightarrow Rounding \rightarrow Refinement
- Rounding procedure
 - Y: normalized assignment matrix
 - $\bullet~{\bf f}\colon$ the number of clusters each data point is assigned to
 - g: which data points are not assigned to any cluster
- Refinement
 - Use LRSDP solution as the initial cluster assignment for the iterative NEO-K-Means algorithm
- Sampling
 - Run LRSDP on a 10% sample of the data points
- Two-level hierarchical clustering
 - First level: $k' = \sqrt{k}$, $\alpha' = \sqrt{1 + \alpha} 1$ and unchanged β
 - Second level: k', α' and $\beta' = 0$ for each cluster at level 1

Experimental Results on Synthetic Problems

- Overlapping community detection on a Watts-Strogatz cycle graph
 - LRSDP initialization lowers the errors.

Experimental Results on Data Clustering

- Comparison of NEO-K-Means objective function values
 - Real-world datasets from Mulan³
 - By using the LRSDP solution as the initialization of the iterative algorithm, we can achieve better objective function values.

		worst	best	avg.
	kmeans+neo	9611	9495	9549
yeast	lrsdp+neo	9440	9280	9364
5	slrsdp+neo	9471	9231	9367
music	kmeans+neo	87779	70158	77015
	lrsdp+neo	82323	70157	75923
	slrsdp+neo	82336	70159	75926
scene	kmeans+neo	18905	18745	18806
	lrsdp+neo	18904	18759	18811
	slrsdp+neo	18895	18760	18810

³http://mulan.sourceforge.net/datasets.html

Joyce Jiyoung Whang, The University of Texas at Austin

Experimental Results on Data Clustering

• F₁ scores on real-world vector datasets

- NEO-K-Means-based methods outperform other methods.
- Low-rank SDP method improves the clustering results.

		тос	esp	isp	okm	kmeans+neo	lrsdp+neo	slrsdp+neo
	worst	-	0.274	0.232	0.311	0.356	0.390	0.369
yeast	best	-	0.289	0.256	0.323	0.366	0.391	0.391
	avg.	-	0.284	0.248	0.317	0.360	0.391	0.382
	worst	0.530	0.514	0.506	0.524	0.526	0.537	0.541
music	best	0.544	0.539	0.539	0.531	0.551	0.552	0.552
	avg.	0.538	0.526	0.517	0.527	0.543	0.545	0.547
scene	worst	0.466	0.569	0.586	0.571	0.597	0.610	0.605
	best	0.470	0.582	0.609	0.576	0.627	0.614	0.625
	avg.	0.467	0.575	0.598	0.573	0.610	0.613	0.613

Experimental Results on Graph Clustering

- Conductance-vs-graph coverage
 - The lower curve indicates better communities.

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (20/22)

Experimental Results on Graph Clustering

- AUC of conductance-vs-graph coverage
 - Real-world networks from SNAP⁴
 - LRSDP produces the best quality communities in terms of AUC score.
 - The largest graph: AstroPh (17,903 nodes, 196,972 edges)

	Facebook1	Facebook2	HepPh	AstroPh	
bigclam	0.830	0.640	0.625	0.645	
demon	0.495	0.318	0.503	0.570	
oslom	0.319	0.445	0.465	0.580	
nise	0.297	0.293	0.102	0.153	
neo	0.285	0.269	0.206	0.190	
LRSDP	0.222	0.148	0.091	0.137	

⁴http://snap.stanford.edu/

Joyce Jiyoung Whang, The University of Texas at Austin ACM SIGKDD 2015 (21/22)

Conclusions

- We propose a convex SDP relaxation of a k-means-like objective that handles non-exhaustive, overlapping clustering problems.
- We formulate a low-rank factorization of the SDP problem and implement the scalable LRSDP algorithm.
- We also propose a series of initialization and rounding strategies that accelerate the convergence of our optimization procedures.
- Experiments show that our LRSDP approach gives reliable solutions on both data clustering and overlapping community detection problems.

http://www.cs.utexas.edu/~joyce/