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Main Contributions NEO-SDP via CVX vs. NEO-LR via LRSDP

» NEO-SDP: a convex relaxation of a k-means-like objective that handles
non-exhaustive, overlapping clustering problems.

» Scalable NEO-LR objective and an LRSDP algorithm to optimize a low-rank
factorization of the NEO-SDP solution.

» A series of initialization and rounding strategies that accelerate the

» Comparison of objective values and run time

» LRSDP is much faster than CVX, and the objective values from CVX and
LRSDP are identical — they are ditferent in light of the solution tolerances.

Obijective value Run time (secs.)

L SDP LRSDP SDP LRSDP
convergence of our optimization procedures. k=2, 0=0.2, =0 -1.968893 -1.968329 107.03 2.55
» Evaluate LRSDP on real-world data clustering problems and find it dolphins k=2, a=0_2’ 3=0.05 -1.969080 -1.968128 56.99 2 9B
achieves the best Fq performance with respect to ground-truth clusters. k=3: a=0_3: 5=0 2913601 -2.915384 16057 5.39
» For graph clustering problems, LRSDP produces the best quality k=2, a=0.2, 5=0 -1.937268 -1.935365 453.96 7.10
communities among all clustering algorithms on real-world networks. les miserables k=2, a=0.3, =0  -1.949212 -1.945632 447.20 10.24
k=3, a=0.2, 5=0.05 -2.845720 -2.845070 261.64 13.53

NEO-K-Means Objective & Iterative NEO-K-Means Algorithm
Motivating Example: Robust LRSDP Algorithm

» Non-exhaustive, overlapping clustering: some data points are allowed to be
outside of any cluster and clusters are allowed to overlap with each other.

» Weighted kernel NEO-K-Means objective function
K n

» NEO-K-Means algorithm with two different initializations on two datasets
» (a), (b): On a simple dataset, NEO-K-Means can easily recover the

minimize S5 uewillé(x;) — mo|%, where me — >oin1 UisWid(xi) ground-truth clusters with k-means initialization or LRSDP initialization.
U — c | SO UieW, » (c)—(f): LRSDP initialization allows the NEO-K-Means algorithm to
subject to trace(U"U) = (1 + a)n, 371 I{(U1); = 0} < 8n consistently produce a reasonable clustering structure whereas k-means

initialization sometimes (4 times out of 10 trials) leads to a failure.
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» o and (5 control the degree of overlap and non-exhaustiveness.

» Weighted Kernel NEO-K-Means objective is equivalent to the extended
normalized cut objective for overlapping community detection.

» The iterative NEO-K-Means Algorithm
» Fast algorithm that monotonically decreases the NEO-K-Means objective
» Can be trapped in local optima given poor initialization
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(C) Ground-truth clusters

Semidefinite Programming For NEO-K-Means
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» (Goal: more accurate and more reliable solutions than the iterative
NEO-K-Means algorithm by paying additional computational cost

» NEO-SDP: Semidefinite Programming (SDP) for NEO-K-Means

» Convex problem (— globally optimized via a variety solvers such as CVX)
» Problems with fewer than 100 data points

» NEO-LR: Low-rank factorization of SDP for NEO-K-Means

» Non-convex (— locally optimized via an augmented Lagrangian method)
» Problems with tens of thousands of data points

» Three key variables for SDP formulations: f (no. of clusters each data point
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(b) k-means/LRSDP initialization (€) k-means initialization (success) (f) k-means initialization (failure)

Experimental Results on Data Clustering

belongs to), g (indicator of non-exhaustiveness), Z (co-occurrence matrix)
€, C; N Cowi? oww, e 9o o 0 » F4 scores on real-world vector datasets
12 2 ; 1 e 00 o SR . NEO-K-Means-based methods outperform other methods.
U=101]x 1 1 ‘- witwy wikwg ' w:]irwﬁzg wwizw 0 » LRSDP methods improve the quality of clustering.

0 01 %4 0 0. 0 0 o ol 100 0 0 moc esp ISp OKmM kmeans+neo Irsdp+neo slrsdp+neo

NEO-SDP NEO-LR yeast worst - 0.274 0.232 0.311  0.356 0.390 0.369

maximize trace(KZ) —f'd minimize £7d — trace(Y'KY) best - 0.289 0.256 0.323 0.366 0.391  0.391

Zfg Y fgs.r avg. - 0.284 0.248 0.317  0.360 0.391 0.382

subject to trace(W 'Z) =k, subjectto k = trace(Y'W'Y) nusic worst 0.530 0.514 0.506 0.524 0.526 0.537  0.541
Ze = Wt 0=YY'e— Wt best 0.544 0.539 0.539 0.531  0.551 0.552 0.552
e'f=(1+a)n, 0=e'f—(1+a)n avg. 0.538 0.526 0.517 0.527 0.543 0.545 0.547
e'g > (1 - p/)n, O0=e'g—(1—-p)n—r scene worst 0.466 0.569 0.586 0.571  0.597 0.610 0.605
f>g, O=f—g—s best 0.470 0.582 0.609 0.576  0.627 0.614  0.625
Zi > 0, Y; >0, avg. 0.467 0.5750.598 0.573 0.610 0.613 0.613
zzmzzzT s> 0,r>0

0<f<keO<g<1 0<f<keOD<g<1

Experimental Results on Overlapping Community Detection

» LRSDP: Solving the NEO-LR via an augmented Lagrangian method
» Minimizing an augmented Lagrangian of the problem that includes a
current estimate of the Lagrange multipliers for the constraints as well as
a penalty term that drives the solution towards the feasible set.

» AUC of conductance-vs-graph coverage

» LRSDP produces the best quality communities in terms of AUC scores.
~ The largest graph: AstroPh (17,903 nodes, 196,972 edges)

Facebook1 Facebook2 HepPh AstroPh

Rounding Procedure & Practical Improvements

bigclam 0.830 0.640 0.625 0.645

_ _ _ _ demon 0.495 0.318 0.503 0.570

» Rounding procedure: getting a discrete solution fromf, g, Y oslom 0.319 0.445 0465 0.580
» Refinement: use LRSDP solution as the initial cluster assignment for the nise 0.297 0293 0102 0.153
terative NEO-K-Means algorithm. multilevel neo  0.285  0.269  0.206 0.190

» Sampling: run LRSDP on a 10% sample of the data points. L RSDP 0.222 0.148 0.091 0.137

» Two-level hierarchical clustering
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