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Main Contributions

I NEO-SDP: a convex relaxation of a k-means-like objective that handles
non-exhaustive, overlapping clustering problems.

I Scalable NEO-LR objective and an LRSDP algorithm to optimize a low-rank
factorization of the NEO-SDP solution.

I A series of initialization and rounding strategies that accelerate the
convergence of our optimization procedures.

I Evaluate LRSDP on real-world data clustering problems and find it
achieves the best F1 performance with respect to ground-truth clusters.

I For graph clustering problems, LRSDP produces the best quality
communities among all clustering algorithms on real-world networks.

NEO-K-Means Objective & Iterative NEO-K-Means Algorithm

I Non-exhaustive, overlapping clustering: some data points are allowed to be
outside of any cluster and clusters are allowed to overlap with each other.

I Weighted kernel NEO-K-Means objective function

minimize
U

k∑
c=1

n∑
i=1

uicwi‖φ(xi)−mc‖2, where mc =

∑n
i=1 uicwiφ(xi)∑n

i=1 uicwi

subject to trace(UTU) = (1 + α)n,
∑n

i=1 I{(U1)i = 0} ≤ βn.

I α and β control the degree of overlap and non-exhaustiveness.
I Weighted Kernel NEO-K-Means objective is equivalent to the extended

normalized cut objective for overlapping community detection.
I The iterative NEO-K-Means Algorithm

I Fast algorithm that monotonically decreases the NEO-K-Means objective
I Can be trapped in local optima given poor initialization

Semidefinite Programming For NEO-K-Means

I Goal: more accurate and more reliable solutions than the iterative
NEO-K-Means algorithm by paying additional computational cost

I NEO-SDP: Semidefinite Programming (SDP) for NEO-K-Means
I Convex problem (→ globally optimized via a variety solvers such as CVX)
I Problems with fewer than 100 data points

I NEO-LR: Low-rank factorization of SDP for NEO-K-Means
I Non-convex (→ locally optimized via an augmented Lagrangian method)
I Problems with tens of thousands of data points

I Three key variables for SDP formulations: f (no. of clusters each data point
belongs to), g (indicator of non-exhaustiveness), Z (co-occurrence matrix)

NEO-SDP
maximize

Z ,f,g
trace(KZ )− fT d

subject to trace(W−1Z ) = k,
Ze = W f,
eT f = (1 + α)n,
eT g ≥ (1− β)n,
f ≥ g,
Zij ≥ 0,
Z � 0,Z = Z T

0 ≤ f ≤ke,0 ≤ g ≤ 1

NEO-LR
minimize

Y ,f,g,s,r
fT d− trace(Y TKY )

subject to k = trace(Y TW−1Y )

0 = YY T e−W f
0 = eT f− (1 + α)n
0 = eT g− (1− β)n−r
0 = f− g− s
Yij ≥ 0,
s ≥ 0,r≥ 0
0 ≤ f ≤ke,0 ≤ g ≤ 1

I LRSDP: Solving the NEO-LR via an augmented Lagrangian method
I Minimizing an augmented Lagrangian of the problem that includes a

current estimate of the Lagrange multipliers for the constraints as well as
a penalty term that drives the solution towards the feasible set.

Rounding Procedure & Practical Improvements

I Rounding procedure: getting a discrete solution from f, g, Y
I Refinement: use LRSDP solution as the initial cluster assignment for the

iterative NEO-K-Means algorithm.
I Sampling: run LRSDP on a 10% sample of the data points.
I Two-level hierarchical clustering

NEO-SDP via CVX vs. NEO-LR via LRSDP

I Comparison of objective values and run time
I LRSDP is much faster than CVX, and the objective values from CVX and

LRSDP are identical – they are different in light of the solution tolerances.

Objective value Run time (secs.)
SDP LRSDP SDP LRSDP

dolphins
k=2, α=0.2, β=0 -1.968893 -1.968329 107.03 2.55
k=2, α=0.2, β=0.05 -1.969080 -1.968128 56.99 2.96
k=3, α=0.3, β=0 -2.913601 -2.915384 160.57 5.39

les miserables
k=2, α=0.2, β=0 -1.937268 -1.935365 453.96 7.10
k=2, α=0.3, β=0 -1.949212 -1.945632 447.20 10.24
k=3, α=0.2, β=0.05 -2.845720 -2.845070 261.64 13.53

Motivating Example: Robust LRSDP Algorithm

I NEO-K-Means algorithm with two different initializations on two datasets
I (a), (b): On a simple dataset, NEO-K-Means can easily recover the

ground-truth clusters with k -means initialization or LRSDP initialization.
I (c)–(f): LRSDP initialization allows the NEO-K-Means algorithm to

consistently produce a reasonable clustering structure whereas k -means
initialization sometimes (4 times out of 10 trials) leads to a failure.
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(a) Ground-truth clusters
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(c) Ground-truth clusters
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(d) LRSDP initialization
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(b) k -means/LRSDP initialization
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(e) k -means initialization (success)
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(f) k -means initialization (failure)

Experimental Results on Data Clustering

I F1 scores on real-world vector datasets
I NEO-K-Means-based methods outperform other methods.
I LRSDP methods improve the quality of clustering.

moc esp isp okm kmeans+neo lrsdp+neo slrsdp+neo

yeast worst - 0.274 0.232 0.311 0.356 0.390 0.369
best - 0.289 0.256 0.323 0.366 0.391 0.391
avg. - 0.284 0.248 0.317 0.360 0.391 0.382

music worst 0.530 0.514 0.506 0.524 0.526 0.537 0.541
best 0.544 0.539 0.539 0.531 0.551 0.552 0.552
avg. 0.538 0.526 0.517 0.527 0.543 0.545 0.547

scene worst 0.466 0.569 0.586 0.571 0.597 0.610 0.605
best 0.470 0.582 0.609 0.576 0.627 0.614 0.625
avg. 0.467 0.575 0.598 0.573 0.610 0.613 0.613

Experimental Results on Overlapping Community Detection

I AUC of conductance-vs-graph coverage
I LRSDP produces the best quality communities in terms of AUC scores.
I The largest graph: AstroPh (17,903 nodes, 196,972 edges)

Facebook1 Facebook2 HepPh AstroPh
bigclam 0.830 0.640 0.625 0.645
demon 0.495 0.318 0.503 0.570
oslom 0.319 0.445 0.465 0.580
nise 0.297 0.293 0.102 0.153
multilevel neo 0.285 0.269 0.206 0.190
LRSDP 0.222 0.148 0.091 0.137
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