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ABSTRACT

Complex relationships among entities can be modeled very
effectively using hypergraphs. Hypergraphs model real-world
data by allowing a hyperedge to include two or more entities.
Clustering of hypergraphs enables us to group the similar en-
tities together. While most existing algorithms solely con-
sider the connection structure of a hypergraph to solve the
clustering problem, we can boost the clustering performance
by considering various features associated with the entities
as well as auxiliary relationships among the entities. Also,
we can further improve the clustering performance if some
of the labels are known and we incorporate them into a clus-
tering model. In this paper, we propose a semi-supervised
clustering framework for hypergraphs that is able to easily
incorporate not only multiple relationships among the enti-
ties but also multiple attributes and content of the entities
from diverse sources. Furthermore, by showing the close re-
lationship between the hypergraph normalized cut and the
weighted kernel K-Means, we also develop an efficient mul-
tilevel hypergraph clustering method which provides a good
initialization with our semi-supervised multi-view clustering
algorithm. Experimental results show that our algorithm is
effective in detecting the ground-truth clusters and signifi-
cantly outperforms other state-of-the-art methods.
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1. INTRODUCTION

A hypergraph can be considered as a generalization of a
graph, which is defined by a set of nodes and a set of hyper-
edges where a hyperedge connects two or more nodes. Hy-
pergraphs are useful tools to model complex real-world data
that include higher order relationships among objects. They
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have been studied in diverse applications including computer
vision [4,28], VLSI CAD [13], bioinformatics [33], and social
network analysis [31]. In [4], for example, a hypergraph-
based image retrieval and tagging system has been proposed
where a hypergraph is utilized to encode additional informa-
tion which is hard to be represented in a normal graph.

Hypergraph clustering algorithms aim to cluster the nodes
based on the connection structure of a hypergraph such that
highly connected nodes are assigned to the same cluster.
Being different from the traditional graph clustering prob-
lem [5,11,36], a hypergraph clustering algorithm should be
able to appropriately handle the hyperedges. For example,
the hypergraph normalized cut [43] is one of the well-known
objectives for hypergraph clustering. We show that the hy-
pergraph normalized cut objective is mathematically equiva-
lent to the weighted kernel K-Means objective. This analysis
is an extension of [5] to hypergraphs. Based on the equiva-
lence of the objectives, we develop an efficient multilevel hy-
pergraph clustering algorithm, hGraclus, which also seam-
lessly extends the algorithm in [5] to hypergraphs. This effi-
cient structure-based hypergraph clustering algorithm pro-
vides a good initialization of our proposed semi-supervised
multi-view model which is described below.

While the connection structure of a hypergraph is a key
factor that should be taken into account for hypergraph
clustering, we can improve the clustering performance by
incorporating various attributes or features of the objects
and other multiple auxiliary relationships among the ob-
jects if they are available. To incorporate both graph struc-
ture and node attributes for the traditional graph clustering,
various approaches have been studied including a unified
distance-based model [44], model-based methods [30, 38],
and a popularity-based conditional link model [39]. These
methods can be considered as multi-view clustering meth-
ods [3,23] in that they consider different views of the objects,
e.g., various attributes of the objects as well as the graph
structure, to derive a clustering of the objects.

We note that most existing multi-view clustering meth-
ods are based on unsupervised learning. However, if the
labels of a subset of the objects are available, we can boost
the clustering performance by incorporating these partially
available labels into a clustering model [18]. Semi-supervised
clustering methods [22,40,41] exploit the partially observed
labels of the objects to improve the clustering performance.
However, most existing semi-supervised methods do not take
into account multi-view clustering, i.e., they just focus on
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Figure 1: Semi-supervised multi-view clustering with a hyper-
graph

weight matrices (Section 3.1).

e Based on the equivalence of the objectives, we develop
an efficient multilevel hypergraph clustering algorithm,
hGraclus, which optimizes the hypergraph normalized
cut in multiple scales using the iterative weighted ker-
nel K-Means algorithm (Section 3.2-3.4).

e Based on the relationship between the hypergraph nor-
malized cut and SymNMF [17] (Section 4.1), we pro-
pose a multi-view clustering objective function that
can incorporate multiple views of data in addition to
the hypergraph structure (Section 4.2).

e We extend our multi-view clustering objective into semi-
supervised clustering (Section 4.3).

e We develop a reliable solution procedure to optimize
the proposed objective function which is effectively ini-
tialized by hGraclus (Section 4.4-4.6).

e We show that MEGA significantly outperforms 13 differ-
ent state-of-the-art methods on real-world datasets in
terms of the F1, accuracy, and NMI scores (Section 6)*.

The Web queries can be clustered based on query session in-
formation, the semantics of the queries, and click-logs. For
Web query clustering, an important feature is a query ses-
sion that represents a set of Web queries that are made by
a user during a short period of time. If a set of queries
are entered in one session, we can infer that those queries
are closely related with each other. One way to encode this
query session information is to use a hypergraph. Let us rep-
resent a query as a node and a query session as a hyperedge
that connects the queries that appear in the same session.
Since more than two queries can appear in one session, we
need a hyperedge to appropriately represent a query ses-
sion. Figure 1(a) shows an example of the hypergraph (S1).
Along with the hypergraph, there can be a word embedding
matrix for the Web queries (X1: keyword x query) which
encodes the semantics of the queries. Also, a search engine
Motivating Example company usually traces clicked Web pages for a given query,
which can be represented by a bipartite graph (X2: web
pages X query) where the queries and the clicked Web pages
are modeled as two different types of nodes. Furthermore,
we assume that the labels of a small subset of the queries
are available, and we utilize these partially observed labels
which are denoted by P (cluster x query) in Figure 1(a).

LAll the datasets and the codes are available at Our goal is to appropriately cluster the Web queries by in-
http://bigdata.cs.skku.edu. corporating all of this information.

Let us consider Web query clustering as a real-world appli-
cation of our model. We get a real-world Web query dataset
from NAVER (which is the largest search engine company in
South Korea) who also provides the ground-truth clusters.
More details about the datasets are described in Section 6.
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We investigate whether we can actually improve the clus-
tering performance by adding additional views of objects
(besides the hypergraph structure) and incorporating par-
tially observed labels into a clustering model. Figure 1(b)
shows the clustering performance of our method when dif-
ferent numbers of views are considered. Since we have the
ground-truth clusters for the query dataset, we can compare
the algorithmic solutions and the ground-truth clusters. The
F1 score is computed by calculating the harmonic mean of
the presented precision and recall. Higher F1, precision,
and recall scores indicate better clustering performance. In
Figure 1(b), the three leftmost bars above S, indicate the
performance of hGraclus where only the hypergraph is con-
sidered to cluster the Web queries. The three bars above
S1 + X indicate the performance of MEGA when we con-
sider both the hypergraph S; and the embedding matrix
X 1. Similarly, the bars above S1 + X1 + X2 indicate the
performance of MEGA with S;, X, and X3. The right-
most three bars above S1 + X1 + X2 + P indicate the per-
formance of MEGA when we incorporate all of the available
views, S1, X1, and X2, and partial supervision P. From
Figure 1(b), we note that, as we incorporate an additional
view of the queries, the clustering performance is improved.
Even though it is not guaranteed that the clustering perfor-
mance always increases according to the number of views in
general, our query clustering example shows the benefit of
adding a view and partial supervision.

2. HYPERGRAPH CLUSTERING

We briefly review the concept of hypergraphs, and for-
mally state the hypergraph clustering problem.

2.1 Hypergraphs

A hypergraph G is represented by G = (V, &, f) where V
is a set of vertices, £ is a set of hyperedges, and f € R‘f‘
is a vector of nonnegative weights for the hyperedges (R4
denotes nonnegative real numbers). Assume that there are
n vertices and m hyperedges, i.e., |V| = n and |£] = m.
A hyperedge ¢; € £ is a set that consists of two or more
vertices, and e; Uea U---Uen = V. A positive weight f; is
associated with a hyperedge ¢; ( =1,---,m).

We consider an incidence matrix A € {0,1}"*™ of the hy-
pergraph G such that a;; = 1 if the i-th vertex is included
in the j-th hyperedge and a;; = 0 otherwise. Given this
notation, the degree of a vertex is defined to be deg(v;)
Zj fiai; and the degree of a hyperedge is defined to be
deg(e;) = lej| = >, ai. Let D, € R}*™ denote the de-
gree diagonal matrix for vertices where the i-th diagonal
element corresponds to deg(v;). Similarly, let D, € R"*™
denote the degree diagonal matrix for hyperedges where the
j-th diagonal element corresponds to deg(e;). We also use
F € R7"™™ to represent the weight diagonal matrix for hy-
peredges where the j-th diagonal element indicates f;.

2.2 Hypergraph Normalized Cut

Given a hypergraph G = (V, €, f), the goal of hypergraph
clustering is to partition the vertex set V into k disjoint
clusters while highly connected vertices are assigned to the
same cluster. To solve this hypergraph clustering problem,
the hypergraph normalized cut objective has been consid-
ered [43]. For a cluster V; C V, the hyperedge boundary
d(V;) of V; is defined to be the set of hyperedges that in-
clude vertices in both V; and V;° where V;¢ =V \ V;. That
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is, 0V;) == {e; € € ¢, NV # 0,e; N V¢ #£ 0} Recall
that f; denotes the weight of ¢;. As suggested in [43], the
hyperedge cut of V;, denoted by hCut(V;), is defined to be

lej N Ville; N Vi°

hCut(Vi) = Z fj deg(e]‘)

e; €9(V;)

(1)

Let us define the volume of V; to be the sum of vertex
degrees in V;, ie., vol(Vi) := 3 ,, deg(v). Then, the
hypergraph normalized cut objective is defined to be

k

min Z hCut (Vz)

hNCut(G) := Vi, 2 vol(Vy)

(2)

We can rewrite (2) using matrices and vectors by intro-
ducing an indicator matrix Y € {0,1}"** where y;; = 1 if
the ¢-th node belongs to the j-th cluster and y;; = 0 other-
wise. Let y; denote the j-th column of Y. Then, (2) can
be expressed as a trace maximization problem as follows:

trace(Y' D, “>AFD.ATD, '?Y) (3)

D“ 1/ 2)’]‘
Vy;TDyy; '
Note that Y'Y = I,. The problem (3) can be solved
by spectral clustering [24] which keeps the orthogonality
but in general ignores the nonnegativity constraint [43] or a
symmetric nonnegative matrix factorization (SymNMF) [17]
which keeps the nonnegativity constraint only.

3. HYPERGRAPH NORMALIZED CUT &
WEIGHTED KERNEL K-MEANS

We show that the hypergraph normalized cut objective
becomes equivalent to the weighted kernel K-means objec-
tive when we define appropriate kernel and weights. This
equivalence allows us to develop an efficient multilevel hy-
pergraph clustering algorithm which optimizes the hyper-
graph normalized cut using the iterative weighted kernel K-
means algorithm. Our analysis and algorithm presented in
this section are extensions of [5] to hypergraphs.

where the j-th column of Y is defined to be

3.1 Equivalence of the Objectives

Given a set of data points X {x1,X2, -, Xn}, the
weighted kernel K-Means clustering objective [5] may be
written as

min
Ue{0,1}nXk

k n n
ST T wimillo(xi) — my||*, m; = 7Zi§1nuljﬂ_l_¢(_x”
i=1 WijTi

(4)
where 7; indicates a nonnegative weight of x;, ¢(x;) indi-
cates a nonlinear mapping of x;, and U € {0,1}"** is an
assignment matrix where u;; = 1 if the ¢-th data point be-
longs to the j-th cluster and u;; = 0 otherwise. Let uj
denote the j-th column of U. By introducing a kernel ma-
trix K € R"™ ™ where kij = ¢(xi)" ¢(x;), and the weight
diagonal matrix IT € R™*™ where the i-th diagonal entry
indicates m;, we can rewrite (4) in the form of the trace
maximization problem

j=11i=1

trace(l}Tﬂl/QKHI/Qﬁ) (5)

max
v>0,070=1,

/2.0
u;

\/ 'lleHllj ’

where the j-th column of U is defined to be



Let us compare (3) and (5). First, we notice that the

assignment matrices Y in (3) and U in (5) are defined in the
same way. Now, in (5), let us define the weight and kernel
matrices to be IT := D, and K := D, 'AFD. *ATD, !
(Note that K is a positive semidefinite matrix since K =
MM?T where M = valAFlmDe*l/Q). Then, we see
that (5) becomes equivalent to (3). Thus, the hypergraph
normalized cut objective (3) is mathematically equivalent to
the weighted kernel K-Means objective (5).

3.2 Optimizing the Hypergraph Normalized
Cut using the Weighted Kernel K-Means

The weighted kernel K-Means objective can be optimized
by the simple iterative algorithm [5]. Since the hypergraph
normalized cut objective can be converted into the weighted
kernel K-Means objective as discussed in Section 3.1, we can
optimize the hypergraph normalized cut by the weighted

kernel K-Means algorithm with appropriate kernel and weights.

In the weighted kernel K-Means algorithm, we first initial-
ize the clusters, and set the tolerance value € and the max-
imum number of iterations tmqez. For every vertex v; € V,
we compute the distance between the vertex v; and the k
clusters, and assign the vertex to its closest cluster. We
repeat this process until the change in the objective value
becomes smaller than e or the number of iterations reaches
tmaz- A key of this process is how to quantify the distance
dist(vi, V) between a vertex v; and a cluster V.. As dis-
cussed in Section 3.1, by defining the weight and kernel
matrices to be IT := D, and K = DU_IA\DU_1 where
A := AFD. A7, the distance dist(vs, Ve) is computed
by

2 Z’u]' EVe dij
deg(v;) vol(V.)

Z’UjEVc,ULEVC aji

dist(vi, Ve) = Yol (V)2

(6)

where a;; denotes the ¢-th row and the j-th column entry in
> f(e)
e€Qe, deg(e)
where Q. = {e € £ : v; € ¢,v; € ¢} and f(¢) denotes the
weight of the hyperedge ¢. This implies that we construct

A. Indeed, a;; can be represented by a;; =

A which encodes the nodes x nodes relationship where each
component a@;; incorporates the hyperedges that are shared
by the vertices v; and v; with appropriate normalization.
This interpretation allows us to further extend our idea
to clustering of hyperedges. To cluster the hyperedges in
a hypergraph, we can intuitively construct Il := D. and
K = D./'AD. ! where A := ATD, ' A to encode the
hyperedges x hyperedges relationship. Each component a;;
in A incorporates the vertices that are shared by the hy-

Z’UE Qy

——— where

peredges ¢; and ¢;. Specifically, a;; = aee(0)
eg(v

Q,={veEV:ivEce,vEc;}

3.3 Multilevel Hypergraph Clustering

A multilevel graph clustering framework has been known
to be an efficient way to solve large-scale graph clustering
problems as noted in [12], [5], and [35]. However, very few
studies have been conducted on hypergraph clustering, es-
pecially from the hypergraph normalized cut optimization
perspective. We develop a multilevel hypergraph cluster-
ing algorithm, hGraclus, which refines clustering in mul-
tiple scales using the weighted kernel K-Means algorithm.
By refining the clustering results in multiple scales, we can
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Algorithm 1: Multilevel Hypergraph Clustering via Weighted
Kernel K-Means (hGraclus)
Input: G = (V,&,f), k
Output: Vi, Va2, Vi
1: /* Coarsening Phase */
Set t =0, GV =G, VO Vv, 0 g O ¢
repeat
tet+1, 1t
Create G from G*~Y by merging pairs of vertices
that share a hyperedge. The vertices that have a high
normalized hyperedge cut defined in (7) are merged.
6: until [V®| > 0.1 x [V
7: /* Base Clustering Phase */
8: Partition G into k clusters by a base clustering scheme.
9
0
1

: /* Refinement Phase */

cfort=101—-1,---,1do

Initialize a clustering of G~ by projecting the clus-
tering result of G into G¢~.

Refine the clustering of G®™Y by running the
weighted kernel K-Means algorithm as described in
Section 3.2 where the distance dist(v;, V.) between a
vertex v; and a cluster V, is computed by (6).

13: end for

get qualitatively better solutions than those achieved by
a single-level optimization. As described in Algorithm 1,
hGraclus consists of three phases: coarsening phase, base
clustering phase, and refinement phase. We present the clus-
tering performance of hGraclus in Section 3.4.

3.3.1 Coarsening Phase

Given the original hypergraph G©, we create a series
of smaller hypergraphs by merging vertices. That is, we
create G® from GV such that the number of vertices
in G is smaller than that in G~V . To determine which
vertices should be merged, we consider pairs of vertices that
share a hyperedge. Let us consider v and v' in GV, and
assume that v and v’ share a set of hyperedges represented
by Q. ={e € gDy e ¢e,v’ € ¢} where E1=1) denotes the
set of hyperedges of G~V If we consider v and v’ to be
individual clusters, the normalized hyperedge cut between v
and v’ can be represented by

f(e) f(e)
hNCut(v,v') = — deg(c) — deg(c) (7)
’ deg(v) deg(v’)

where f(e¢) denotes the weight of the hyperedge e (note that
deg(v) and deg(e) are defined in Section 2.1). In the coars-
ening phase, our goal is to gradually scale down the input
hypergraph while minimizing the normalized hyperedge cut.
To achieve this goal, we create G from G~V as follows.
Initially, all the vertices in G~V are unmarked. We visit
each unmarked vertex v and merge it with an unmarked v’
that maximizes (7) to hide the large hyperedge cut. Then, v
and v’ are marked. If all neighbors of v have been marked,
we simply mark v. Once all the vertices are marked, the
coarsening from G~ to G is complete. In this way, we
repeatedly coarsen the hypergraph until the finally coars-
ened hypergraph contains less than 10% of the number of
vertices in the original hypergraph. Although different kinds
of stopping criteria or heuristics can be applied in this coars-
ening phase, we observe that the performance of hGraclus
is not largely affected by those heuristics.



Table 1: Clustering performance of SWS [28], SPC [43], hMetis [13]
and hGraclus. In terms of the hypergraph normalized cut (hNCut
defined in Section 2.2) and run time (in seconds), hGraclus shows
the best performance.

SWS SPC hMetis hGraclus

QUERY hNCut 1.276 3.286 0.659 0.550
Run Time 51.3 0.131 1.230 0.005

; 7(;;31\17137 “hNCut 0.720 2.361  0.512 0.496
Run Time 193.5 0.267 0.519 0.009

) 70(7)[;\7 “hNCut  2.163  4.542  0.588  0.512
Run Time 871.7 0.090 0.432 0.008

) ;1;L17>57 “hNCut 7 © 0937 2920 0.206 ~ 0.131
Run Time 2331.0 4.628 1.387 0.057

71;13;1;1(7) “hNCut 7 T 2,149 6.289  0.435  0.321
Run Time 8068.3 20.7 3.394 0.114

3.3.2 Base Clustering Phase

Once the original hypergraph is transformed into a small
hypergraph, we apply the base clustering scheme by adopt-
ing similar approaches used in [5]. The idea is to partition
the small hypergraph into k clusters by running a tradi-
tional graph clustering method on A (or A for hyperedge
clustering) discussed in Section 3.2.

3.3.3 Refinement Phase

We first initialize a clustering of Gt—b by projecting the
clustering result of G® into G¢~ (projection step). That
is, if a supernode v; in G® belongs to cluster V., then we
initially assign the nodes in G~ which were merged by
the supernode v; to V.. Then, we run the weighted kernel
K-Means algorithm to refine the clustering of G*~Y (refine-
ment step). Note that the distance between a vertex and a
cluster is computed by (6) as described in Section 3.2. Since
the projection step provides GV with a good initializa-
tion, the weighted kernel K-Means algorithm usually con-
verges in a small number of iterations. This refinement step
plays the most crucial role in optimizing the hypergraph nor-
malized cut. From the smallest coarsened hypergraph to the
original hypergraph, we refine the clustering results ! times
at different scales. This multi-level refinement enables us to
achieve qualitatively good results in practice since we apply
the weighted kernel K-Means algorithm multiple times on
the given hypergraph with different scales.

3.4 Clustering Performance of hGraclus

We compare the clustering performance of hGraclus (Al-
gorithm 1) with those of hMetis [13], a spectral hypergraph
partitioning method [43] (denoted by SPC) , and the SWS [28]
method. These four methods cluster a hypergraph based
solely on the hypergraph structure. While both hGraclus
and hMetis are multilevel hypergraph clustering algorithms,
hMetis is designed to produce almost equal sized clusters
while hGraclus does not have explicit constraints on clus-
ter sizes. Table 1 shows the clustering performance of the
methods on the five datasets described in Section 6.1. We
compare the hypergraph normalized cut, i.e., hNCut defined
by (2) in Section 2.2, and the run time (in seconds). A
lower hypergraph normalized cut value indicates a better
clustering. We see that hGraclus is the fastest method and
achieves the smallest hypergraph normalized cut on all the
datasets.
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4. A SEMI-SUPERVISED LEARNING
FRAMEWORK FOR MULTI-VIEW
CLUSTERING OF HYPERGRAPHS

We extend our idea to a semi-supervised clustering method
which incorporates not only the hypergraph structure but
also various features associated with the objects as well as
multiple auxiliary relationships among the objects.

4.1 Hypergraph Normalized Cut & SymNMF

There is a close relationship between the hypergraph nor-
malized cut objective and SymNMF [17]. Given a nonneg-
ative symmetric matrix B € R}*"™ and a reduced rank k,
the SymNMF of B is defined to be the problem of finding
a nonnegative matrix V' € RT’“ such that the difference
between B and VV7T

min |B - VV7|3.
V>0

is minimized. That is,
(8)

Recall the hypergraph normalized cut defined in (3). Let
B:=D, '?AFD. 'A"D, /2. Then, by following the
similar analysis suggested in [16,17], we can rewrite (3) as

~~T
IB-YY |7
)

Note that in (9) and (8), although the constraints on Y and
V are different, the function to minimize is the same. There-
fore, the hypergraph normalized cut can be reformulated as
a SymNMF problem. While the method discussed in Sec-
tion 3 directly optimizes the hypergraph normalized cut, we
now consider solving the SymNMF problem because refor-
mulating the problem in this form is beneficial to extending
our model to multi-view and semi-supervised clustering set-
tings which will be discussed in the following sections. While
SymNMF [17] is an unsupervised graph clustering method,
our proposed model is a multi-view semi-supervised cluster-
ing method that can also handle hypergraphs.

trace(f’TBf/) =

Y >0

max

min
y>0,vTy=1, T

Yiy=1,

4.2 Multi-View Clustering of Hypergraphs

If our goal is to cluster a hypergraph based solely on the
structure, we can consider optimizing the hypergraph nor-
malized cut using the hGraclus algorithm proposed in Sec-
tion 3.3. However, along with a hypergraph, we often have
multiple features or attributes for the objects, multiple aux-
iliary relationships among the objects or the similarity in-
formation between the objects. Now, we discuss a way to
incorporate all this information into the hypergraph cluster-
ing problem so that we get a multi-view clustering model.

Let X; € Ri"x”, 1=1,2,---,p, denote the i-th feature set
of the n objects (i.e., the i-th view) where each object is rep-
resented by [; nonnegative features and p is the number of
available feature sets. We may also have multiple relation-
ships or similarity matrices for the objects. Let S; € R}*",
j=1,2,--- q, denote a symmetric matrix that represents a
relationship between the objects, where ¢ is the number of
different relationships or similarity matrices. In this setting,
the hypergraph structure can be represented by S; where
S; == D,”'?AFD. A" D, /2 due to the analysis in
Section 4.1. We develop a unified framework to incorporate
all the information provided by X; and S; into the cluster-
ing using a joint nonnegative matrix factorization (NMF)
approach. The key idea is that each of the given matrices,



X ; and S, can be simultaneously approximated by a prod-
uct of two nonnegative low-rank matrices where one of the
factors is shared across the given matrices and regarded as
the cluster assignment matrix.

We can approximate X; by the product W;H where
H € RY*™ is the common factor (i.e., the shared factor)

and W, € Rl_iXk is the X ;-dependent factor. Then, each
column of H can be interpreted as a soft clustering assign-
ment of the corresponding object while each column of W
is considered as a representative of the corresponding clus-
ter. The index of the maximum coordinate in H (:, j), say
7", indicates that the j-th object is best represented by the
1*-th column in W;. Therefore, it is reasonable to assign
the j-th object to the i*-th cluster. Each column of H can
be interpreted in this way, and thus H can be regarded as
a cluster assignment matrix.

When we approximate S; by a product of two low-rank
matrices, we can use the SymNMF [17]. Although a stan-
dard symmetric NMF assumes S; ~ HTH, we let S; ~

,/H\jTH while we impose ﬁj ~ H to solve the problem more
efficiently [6]. By setting S; :== D,"'/?AFD. 'A"D, /2,
we optimize the hypergraph normalized cut as shown in Sec-
tion 4.1, and thus we naturally incorporate the hypergraph
structure into our multi-view clustering problem. Finally,
integrating all of the above, we propose the following objec-
tive function:

P
D aillXi-WiH|%

=1

min_
(W;,H,H;)>0

q q
— T 2 — 2
328 s —H H| + >0 ||H - | 0
=1 j=1

where the parameters a; and (§; weigh the relative impor-
tance of the corresponding terms, and theoretically we need
a large value for «; to let H; and H become close. We can
rewrite (10) as
— —~ 2 g — T 2

I
(W,H,H;)>0 ¥ =1 ¥

kil — 2

Sl nf o
j=1

where X = [\/EXl; NLTP: CHEEE \/@Xp] and
W = [@Wl;\/EQWQ;“';\/@Wp}. The H factor is
common for all the terms in (11), and plays the role of the
cluster assignment matrix that incorporates all the signals
captured by X; and S;. Therefore, by solving (11), we get
a solution of the multi-view clustering problem where the
multiple views are provided in the form of X; and S;.

The approximation error of minww, g>o) || X — WzHH?,
in (10) is bounded below by the optimal NMF residual of
min p, g>0) | X — DE|%. The difference is that H is com-
mon in all terms in (10), so more restricted. But D and E
in the second equation depend only on X ;. Then, the sec-
ond equation is bounded below by min||X; — DE||3 where
low rank factors have no restriction. Therefore, the opti-
mal solution DE here will be the same as the U/ Sy V s
where X; = USV" is the SVD of X, and Uy and Vs are
the first &’ columns of U and V, respectively, and Sy is the
leading principal k' x k" submatrix of 8. So min|| X;—DE||3
is bounded below by the sum of o7 for j = k' +1,---,p/,
where p’ = min(l;,n) assuming X; € Rli’x”, and o, is the
j-th singular value of X;.
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4.3 Semi-Supervised Learning

While most existing clustering methods have been studied
in the context of unsupervised learning, we can improve the
clustering performance if we can exploit the information of
any available labels of the objects. We now discuss a way to
extend our multi-view clustering model defined in (11) to a
semi-supervised learning framework. Suppose that we par-
tially observe the labels of the objects. Let P € {0, 1}’””
denote the partially observed labels, i.e., p;; = 1 if the j-th
object belongs to the i-th cluster. It is important to note
that p;; = 0 can be interpreted in two different ways: (i) the
j-th object does not belong to the i-th cluster, (ii) there is
no information about whether the j-th object belongs to the
i-th cluster or not. Note that (i) can happen when we ob-
serve the label of the j-th object whereas (ii) can happen for
the objects whose labels are not observed. To incorporate
P in our model (11), we assume that P is approximated by
W H where W ¢ ]R’er’C and using the same H as in (11).
We note that, different from X; and S; discussed in Sec-
tion 4.2, P encodes partially observed information. Thus,
we approximate p;; by WiThj only if p;; is an observed entry
where w;” denotes the i-th row of W and h; denotes the
j-th column of H. To encode whether an entry in P is ob-
served or not, we consider entry-wise operations. Following
these ideas, we extend (11) to

— o~ 2 il — 2
_omin X -wWH| +>8|s; - H, H|
(W,W,H,H;)>0 F = F

q _ 2 5
+> 7 |H - B+ Mo (P -WHIE (12)
j:

where M € {0,1}F*" indicates a masking matrix where
m;; = 1 if p;; is observed and m;; = 0 otherwise, and o
denotes a Hadamard product of the matrices. Note that
the factor H is common for all the terms. By optimizing
(12) by the algorithm described in Section 4.4, we can get
the cluster assignment factor H that incorporates all the
signals captured by X, S;, and P.

When we incorporate partial supervision into our model
for semi-supervised learning, we can also consider a set of
pairwise constraints between objects [1] instead of assum-
ing that we directly observe the labels. Let S € {0,1}"*"
represent the pairwise constraints where s;; = 1 indicates
the objects 7 and j belong to the same cluster (i.e., a must-
link constraint) whereas s;; = 0 indicates they do not be-
long to the same cluster (i.e., a cannot-link constraint) if
si; is observed. If s;; is not observed, s;; remains to be
zero. To distinguish whether s;; = 0 indicates a cannot-link
constraint or s;; is an unobserved entry, we use a masking
matrix Z € {0,1}"*"™ where z;; = 1 if s;; is observed and

zi; = 0 otherwise. In what follows, we formulate this idea.
—_— 2 ki —~ T 2

R 7 S o e
(W,H,H; H)>0 F = F

q . ) . ) B .
+32 |8~ s+ |z -T2 B +u|H - H|
(13)

where theoretically we need a large value for p to let the
H and H become close. In this way, we incorporate partial
supervision into our clustering model.

Our proposed clustering objective functions (12) and (13)
are able to not only capture diverse signals represented by



the hypergraph structure, various attributes of the objects,
and multiple auxiliary relationships between the objects but
also utilize partially observed labels of the given objects.

Normalization and Parameter Selection

For a better performance of SymNMF as a clustering method,
we use the following scaling: Each column of X; is normal-
ized to have unit L2 norm, which leads to || X ;|| , = v/n, and
we scale S; by D;~/28;D;7'/? where a diagonal element
of a diagonal matrix D; is the sum of the elements on the
corresponding row of S; [17]. To balance the terms X; and
S, we multiply v/n/||S;| » to the S; terms. For the terms
that involve M or Z, we normalize each column of M o P
to have unit L2 norm, and perform the degree normaliza-
tion on Z o S. When we compare the results of MEGA with
and without this kind of normalization, we observe that the
proper normalization leads to improving the quality of clus-
ters. In particular, the average gain of the normalization is
7.3% in terms of matching to the ground-truth clusters.

In (12) and (13), we set v; = S;max(S;) where max(S;)
indicates the largest component in S; to impose a large

— 2 —
weight on the term HH] — HH to force H; and H to be
F

very close. Similarly, we set u = max(Zo S).

In our experiments, we set o; = 1 for all ¢ = 1,---p, and
Bj =1forallj =1,---,q. In general, if any prior knowledge
about the importance of each view is provided, the «; and
B; values can be appropriately specified. Otherwise, we can
try several different values for «; and f;, and choose the
parameters that are associated with the best clustering per-
formance on the small training set which is provided for the
semi-supervision. Another way to set the parameters is to
select the parameters which lead to the smallest normalized
objective function value.

4.4 Optimization Algorithm (MEGA)

We solve (12) and (13) using an alternating minimization
scheme of block coordinate descent (BCD). Taking (12) as
an example and assuming p = 2,q = 1, then (12) becomes

min

mi a1 || X1 - WiH|F+as | X2 — WeH||7
(W1,Wo,H;,W,H)>0

+51 HS1 — f‘I\lTHHiJr’Yl Hf‘f\l - HHiJrHMO (P— WH)”?«*-
(14)

We optimize (14) using a 4-block coordinate descent where
each sub-problem is defined as follows.

min

—~T
m HHTW -
wW>0

7|2
X H 15

. (15)
where WT = [\/alwgw\/agwg], and XT = [1 /a1Xf\/a2Xg],
2

: VBIHT | =  |VB1S1
ﬁr\rilgo {\/77111@ } H, [\/ﬂH] h (16)
min HMT o (HTWT - PT)H2 , (17)
wT>0 F
WH x 7
min || |VALHL H| _ | VBiS: (18)
H>0 \/'WH \/'yTHl
Mo (WH) Mo P ||

We use the block principal pivoting (BPP) method [15] to
efficiently solve (15) and (16). On the other hand, we update
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W7 and H by columns to correctly incorporate the effect
of the masking matrix M in (17) and (18). To solve (17), we

update each column j of W7 by

WT(:,j)
axgmin ||DOAT () HTWT (. 5) = DOMT () PTG, )|
WT(,j)20
(19)

where D(z) denotes the diagonal matrix whose diagonal en-

tries are defined by the given vector z, i.e., D(z) = [dij]nxn

and d;; = z; where z € R™ and z; is the i-th component of

z. Also, to solve (18), we update each column of H by
H(:,j) <

2

wo X(:.4)
argmin \/61H1 H(y])f \/ﬁl/S\l(:j].)
H(-)>0 vl VITH (:,5)
DM(:, j))W DM, )P )]l 5
(20)

To speed up the update of W7 and H, we group the columns
of WT and H so that we can apply the BPP method [15]
per group instead of updating each column of W7T and H
one by one. Let us represent (20) as follows:

H(:,j) + If;r(gmin ICH(, ) — il (21)

J)=0
where C; depends on the column j of the matrix M. Let
J indicate a set of indices of the columns of H that have
the same C; which we will denote as C. Also, let Q =
[d1, -+, 4qn]. Then, we can apply

H(:,J) + argmin |CH(:,J) — Q(;, J)H? .
H(:,7)>0

’

(22)

Similarly, we update W7 by using this grouping strategy.
When we incorporate partial supervision using P, the mask-
ing matrix M has only few distinct columns and rows, which
allows our grouping strategy to significantly accelerate the

computations.

We can solve (13) by appropriately handling the masking
matrix Z in a similar way. Assume that we have X1, X,
and Si. Then, (13) becomes

—_ — 2 -~ 2
_ min HX — WHH 18 Hsl - HlTHH +
(W,H,H,H)>0 r F
— 2 —7 2 _ 9
- HHl—HHF—l-HZo(S—H H)HF+uHH—H||F (23)

where X = [a1X1;y/a2X3], and W = [{/aiW1; /aaWa].
Notice that Z is a symmetric matrix by definition as dis-
cussed in Section 4.3. We can optimize (23) using a 4-block
coordinate descent where each sub-problem is defined as:

__ s 2
min HHTWT—XTH , (24)
W >0 F
T112
: \/,BTHT}A [\/6751
H, — , 25
P A V|
— 2
. Zo(HTH)] |:ZOS]
" H)| _ , 26
e [Rve i | IR
— WH f - 2
|| vEHE H VBiS1
min VT H VATH, (27)
i —T
Zo(H' H) ZoS
L VEH VEH T




While we can directly use the block principal pivoting

algorithm [15] to solve (24) and (25), we update H and H
by columns to correctly consider the effect of the masking

matrix Z. To solve (26), we update each column of H by
H(.,j) «

argmin |[[PECINHT g o _ [D@ENSED] |
)50 [ Vil }H("]) { VAH(:,]) } .
Also, to solve (27), we update each column of H by
H(:,j) <
W X(:,j)
\/ﬁTHl \/E‘/g\l(,])
argmin vl H(:,j)— VATH (5, )
HED20 pa, jymE" D(Z(:,5))S(:, 5)
Vil VHHC(:, 5)
(29)

The above algorithm (MEGA) converges to a stationary point

since MEGA follows the BCD framework and satisfies the con-
ditions in the theorem by Bertsekas for the convergence anal-
ysis of the BCD [2,8,14]. Specifically, our objective function
is continuously differentiable, the domains (nonnegative or-
thants) of each “block” (W, ﬁj, W, H, H) are closed
and convex (although no upper bound is imposed, we can
assign a very large upper bound on each block so that the
solution is the same without the explicit upper bound), and
the minimum of each sub-problem, i.e., (15)—(18) and (24)-
(27), is uniquely attained. Therefore, every limit point of
the algorithm is a stationary point.

4.5 Time Complexity and Scalability Analysis

The time complexity of MEGA is dominated by solving the
nonnegative least squares (NNLS) sub-problems (15)—(18)
and (24)—(27). For an NNLS problem in the form

. 2
min[|LT — R|/r, (30)

where L € RY*, T € RV and R € R?*"| the BPP
algorithm we use has a time complexity upper bounded by
4EN + 2(n + 1)k + r[k*/3 + 2(n + I')k?] flops where N is
the number of nonzeros in R, and r is the number of itera-
tions for searching the optimal active set (see [15] for more
details). To analyze the scalability of MEGA, we measure the
run time of MEGA on synthetic datasets with varying sizes.
We assume that we have a hypergraph S; with n objects
and m hyperedges as well as X1 € lex" where [; is the
number of features of the n objects. We provide partial su-
pervision with P (discussed in Section 4.3) where 30% of
the object labels are assumed to be observed. To create the
ground-truth clusters, we divide the n nodes into k clusters
where each cluster contains n/k(1.5 — §) nodes where ¢ is
a uniformly random number between 0 and 1. To create
S1, m randomly sized hyperedges are added such that the
degree of a hyperedge varies from 2 to 10 and there are 60%
within-cluster hyperedges to guarantee a meaningful clus-
tering structure. We create X1 by a multivariate Gaussian
distribution where each of the [; features is assumed to be
independent and identically distributed. In Table 2, we show
the run time in seconds and F1 (%) of MEGA on eight differ-
ent synthetic datasets with varying k, n, m, and l; where
MEGA is initialized by hGraclus (which will be discussed in
Section 4.6), and thus, the run time also includes the run
time of hGraclus (note that the run time of hGraclus is
almost negligible since hGraclus is much faster than MEGA).
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Table 2: Run time (in seconds) and F1 (%) of MEGA according
to the number of clusters k, the number of nodes n, the number
of hyperedges m, and the number of features ;.

k n m I Run Time F1 (%)
syNI 4 10,000 10,000 2 48 98.1
sYyn2 4 50,000 500,000 10 78.3 100.0
syn3 4 100,000 1,000,000 10 180.6 100.0
syn4 4 500,000 1,000,000 1,000 1681.1 100.0
Syn5 8 100,000 200,000 10 90.5 100.0
SYN6 & 100,000 1,000,000 10 242.4 100.0
SYN7 8 500,000 1,000,000 10 2113.0 100.0
SYN8 8 500,000 1,000,000 1,000 2623.7 100.0

4.6 Initialization of MEGA using hGraclus

To apply the optimization algorithm (MEGA) presented in
Section 4.4, we need to initialize H. For example, we solve
(15) given H. A simple way to initialize H is to use a ran-
dom real-valued matrix even though there can be a more
sophisticated initialization [37]. We observe that initializing
H in MEGA using hGraclus is beneficial for improving the
clustering performance. As described in Section 3.3, hGraclus
efficiently optimizes the hypergraph normalized cut by the
multilevel weighted kernel K-Means. Indeed, hGraclus takes
only 0.114 seconds to process a hypergraph with 42,889
nodes and 34,834 hyperedges. As described in Section 4.1,
the hypergraph normalized cut objective can be reformu-
lated as a SymNMF problem, and MEGA includes the Sym-
NMF term to incorporate the hypergraph structure. Since
both hGraclus and MEGA consider the hypergraph normal-
ized cut, the solution that hGraclus produces can be consid-
ered to be a reasonable initialization of MEGA. The solution
achieved by hGraclus is a (0, 1)-matrix whereas H in MEGA
is assumed to be a real-valued matrix. Thus, we add a small
constant (we add 0.5 in our experiments) to the output of
hGraclus to appropriately initialize H.

Table 3 shows the clustering performance of MEGA with
two different initializations: random and hGraclus. We use
five synthetic datasets described in Table 2 as well as five
real-world datasets described in Table 4. We present the
average F1, accuracy, and NMI scores of 15 runs. Higher
scores indicate better clustering results. Details about these
measures are described in Section 6. We compute the gain
of hGraclus initialization by dividing the difference between
the score of hGraclus initialization and that of random ini-
tialization by the score of random initialization. We see
that, overall, MEGA produces better clustering results with
hGraclus initialization than random initialization.

5. RELATED WORK

Hypergraphs have been studied in various contexts (e.g., [4],
[31], and [33]), where hypergraphs are used as important
tools to encode higher-order relationships among objects. To
appropriately handle hypergraphs, different types of graph
Laplacian methods [29,43] have been proposed to analyze
the structure of a hypergraph. Among hypergraph cluster-
ing methods, hMetis [13] is a recognized method which is a
multilevel partitioning method. While both hMetis and our
hGraclus algorithm (presented in Section 3.3) are based on
the multilevel optimization framework, they optimize differ-
ent objectives. The goal of hMetis is to partition a hyper-
graph into k clusters of roughly equal sizes (since hMetis
has been mainly studied in circuit partitioning) whereas
hGraclus does not have explicit constraints on cluster sizes.



Table 3: The average F1, accuracy, and NMI scores of MEGA with two different initializations — random and hGraclus. The gain of
hGraclus initialization is computed by (hGraclus - random)/randomx100(%). We use the five synthetic datasets presented in Table 2
and the five real-world datasets presented in Table 4. Initializing MEGA with hGraclus leads to a better performance.

F1 (1) Accuracy (1) NMI (1)
random  hGraclus Gain (%) random  hGraclus Gain (%) random  hGraclus Gain (%)
SYN1 87.19% 98.06% 12.47 89.84% 97.83% 8.89 85.17% 93.88% 10.23
SYN3 93.17% 100.0% 7.33 95.98% 100.0% 4.19 95.43% 100.0% 4.79
SYND 94.84% 100.0% 5.44 96.93% 100.0% 3.17 97.50% 100.0% 2.56
SYNG 94.22% 100.0% 6.13 96.22% 100.0% 3.93 97.29% 100.0% 2.79
SYN7 78.19% 100.0% 27.89 87.14% 100.0% 14.76 92.69% 100.0% 7.89
CORA 65.48% 68.58% 4.73 68.32% 71.29% 4.35 45.04% 46.98% 4.31
DBLPS 84.41% 86.89% 2.94 83.70% 85.77% 2.47 63.50% 65.96% 3.87
GENE 57.16% 58.50% 2.34 60.29% 61.22% 1.54 20.55% 21.36% 3.94
DBLP10 70.67% 69.51% -1.64 74.52% 73.87% -0.87 60.77% 61.46% 1.14
QUERY 57.97% 57.55% -0.72 55.70% 55.80% 0.18 42.91% 42.05% -2.0
Average Gain 6.69 Average Gain 4.26 Average Gain 3.95

For the traditional graph clustering, various models have Table 4: Real-world Datasets

been proposed to exploit not only graph structure but also No. of nodes No. of hyperedges k Views

available node attributes [30,39,44] even though these mod-
els are not designed to handle hypergraphs. Also, spectral
ensemble clustering method [21] has been proposed to per-
form a robust ensemble clustering. We note that these clus-
tering methods are unsupervised learning methods whereas
MEGA can be used as either an unsupervised method (dis-
cussed in Section 4.2) or a semi-supervised method (dis-
cussed in Section 4.3).

Among a number of semi-supervised learning methods, a
label propagation-based method [42] is well-known. Also, a
maximum margin-based method [41] and a matrix completion-
based method [40] have been proposed. Recently, a partition
level constrained clustering method [22] also has been stud-
ied. We compare MEGA with these methods even though these
semi-supervised learning methods do not take into account
multi-view clustering.

There are very few methods that simultaneously consider
semi-supervised learning and multi-view clustering. We note
that the SMVC [10], MLAN [27], SMACD [9] methods are semi-
supervised multi-view clustering methods but these methods
are not specially designed for handling hypergraphs. In Sec-
tion 6, we show that MEGA significantly outperforms MLAN
and SMACD in terms of identifying the ground-truth clusters.
We could not include SMVC as a baseline in our experiments
because the code is not available.

Many different types of matrix factorization models [7]
have been proposed to conduct consensus clustering [20],
multi-view clustering [6,23] and semi-supervised learning [19].
In particular, [20] proposes an NMF-based model to perform
consensus clustering. While [20] aggregates different clus-
tering results using the connectivity matrix, MEGA directly
reflects the diverse attributes and relations in the objective
function. On the other hand, [23] proposes an unsupervised
multi-view clustering method via joint nonnegative matrix
factorization. Among these matrix factorization methods,
we include [6] as a baseline in our experiments because it is
closely related to our proposed method.

6. EXPERIMENTAL RESULTS

We show the performance of MEGA on five real-world datasets
and compare it with 13 different state-of-the-art methods.
6.1 Datasets

We use five different real-world datasets: QUERY, GENE,
CORA, DBLP5, and DBLP10 which are shown in Table 4.

QUERY 481 15,762 6 X1, X2, 81, P
GENE 2,014 2,023 4 X4,81, 82, P
CORA 2,485 2,485 7 Xi1,85:1, P

DBLPS 19,756 21,492 5 X1, X2, S1, P
DBLP10 42,889 34,834 10 X1, X2, S1, P

The QUERY dataset is the one we introduced in Section 1.
We have a hypergraph S; where a node indicates a query
and a hyperedge indicates a query session (there are 481
queries and 15,762 query sessions), the embedding matrix
X e Rfsx‘lgl, and the clicked documents information X €
Ri%msl. We have six ground-truth clusters for the queries
that are manually labeled by the engineers in NAVER who
provided the dataset. The ground-truth clusters group the
queries that should be handled together, e.g., the queries
that are related to ‘payment’, or ‘place’ and so on.

For GENE [26], we have information about which genes are
associated with which diseases. Since a gene can get involved
in more than two diseases, the gene-disease associations can
be modeled as a hypergraph where a node indicates a disease
and a hyperedge indicates a gene. This hypergraph corre-
sponds to S1 in our model (there are 2,014 diseases and
2,023 genes). Also, there is a tf-idf representation of the
diseases which can be used as X1 € R16,592><2,014 as well as
the pairwise similarities between the diseases which is Sa €
R2014x2,014 " The ground-truth clusters of the diseases are
defined in the OMIM database (https://www.omim.org/)
where each ground-truth cluster corresponds to a specific
type of phenotypes in biology.

For CORA [25], we construct a hypergraph based on the
citation information where a node represents a paper and a
hyperedge groups the given paper and the papers cited by
the given paper (there are 2,485 papers). Since a paper can
be well described by its list of references, we believed that
this hypergraph representation S; is useful to cluster the
papers, which turns out to be true in our experiments. Also,
each paper is associated with a set of predefined keywords.
This information is used for X; € R¥*33%2:485 in) qur model.
There are seven ground-truth clusters of the papers based
on their topics.

We make DBLP5 and DBLP10 from [32]. We extract papers
that belong to the top 5 (top 10) largest venues, and these
venues are considered to be the ground-truth clusters. Based
on the title and the abstract of each paper, we construct
a tf-idf representation of the papers which corresponds to
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X, € R1116X21’492 for DBLPS and X € Ri1’245X34’834 for
DBLP10. Using the citation information, we construct X, €
{0,1)21492X21492 g1 pprph and X, € {0,1)3534x34834
for pBLP10. Also, we construct a hypergraph S; (19,756
nodes and 21,492 hyperedges for DBLP5 and 42,889 nodes
and 34,834 hyperedges for DBLP10) based on the collabo-
ration network where a node indicates an individual and a
hyperedge indicates a paper, i.e., the co-authors of a paper
are associated with the same hyperedge. In this setting, our
problem is to cluster the hyperedges instead of the nodes
because a paper corresponds to a hyperedge. To solve this
hyperedge clustering problem, we compute A as discussed in
Section 3.2. On DBLP5, we empirically observe that S1, X1,
and P are critical factors that affect the clustering quality
whereas X is a redundant feature set.

6.2 Baseline Methods and Experimental Setup

We compare the performance of MEGA with 13 different
state-of-the-art methods listed below. We add a brief note to
each method to summarize the characteristics of the method.

e hGraclus is our multilevel hypergraph clustering dis-
cussed in Section 3.3. [hypergraph structure only]

e hMetis [13] is a hypergraph clustering method that
partitions a hypergraph into k balanced clusters. [hy-
pergraph structure only]

e SPC [43] is a spectral hypergraph partitioning method.
[hypergraph structure only]

e SWS [28] is a hypergraph clustering method that allows
large hyperedges. [hypergraph structure only]

e PCLDC [39] is a discriminative model which combines
the link and content analysis for clustering. [multi-
view clustering)]

e JNMF [6] is a joint NMF-based clustering which incor-
porates both graph structure and attributes. [multi-
view clustering]

e SEC [21] is a spectral ensemble clustering method.
[multi-view clustering]

e CMMC [41] is a constrained maximum margin clustering
method. [semi-supervised learning with S|

e MCCC [40] is a semi-supervised clustering with pair-
wise similarity matrix completion. [semi-supervised
learning with S]

e LGC [42] is a label propagation-based semi-supervised
model. [semi-supervised learning with P]

e PLCC [22] is a partition level constrained clustering
method. [semi-supervised learning with P]

e SMACD [9] is a tensor factorization-based method for
semi-supervised multi-aspect community detection.
[multi-view & semi-supervised learning with P]

e MLAN [27] is a multi-view and semi-supervised model
with local structure learning. [multi-view & semi-
supervised learning with P]

We use publicly available software for the baseline meth-
ods or get the software from the authors. We use the default
parameters the software provides because we also use the
default parameters in MEGA. For hMetis, we use shmetis,
and set UBfactor = 1. For SWS [28], we set the number
of iterations to be 100 for QUERY, GENE, and CORA, and to
be 10 for DBLP5 and DBLP10 since SWS takes more than 5
hours if the number of iterations is set to be 100 on these
two large datasets. For MCCC, we set C' = n/x/% by reading
Theorem 2 in [40]. For LGC, we set o = 0.99 as suggested
in [42]. For MLAN, we normalize the input matrices to bal-
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ance the effect of each view. Among the baseline methods,
only hGraclus, hMetis, SPC, and SWS assume that the input
is a hypergraph. To process a hypergraph using the other
baseline methods, we compute A or A which are described
in Section 3.2. Since SMACD and MLAN are multi-view semi-
supervised methods, these methods take all the available
features and partially observed labels like MEGA.

There are two different types of semi-supervised learning
methods: (i) ones that assume the labels of the objects are
directly observed, and (ii) ones that assume only a set of
pairwise constraints is given instead of the direct labels. In
MEGA, we can handle both of these cases; we handle (i) by
introducing P whereas we handle (ii) by introducing S as
described in Section 4.3. In our experiments, we use P to
incorporate semi-supervision in MEGA.

For the semi-supervised methods, we use five different
masks, i.e., we randomly generate the masking matrices M
or Z (described in Section 4.3) for five times. We run each
method three times for each mask (i.e., 15 runs in total).
For the unsupervised methods, we run each method five
times. We do not report a result if a method takes more
than 10 hours to complete five runs. When P is used for a
semi-supervised method, we assume that 30% of the object
labels are observed. For the models that require S (CMMC and
MCCC), we provide 500 pairwise constraints for QUERY, and
5,000 pairwise constraints for GENE and CORA since these
methods usually require O(n) constraints. Both of CMMC
and MCCC took more than 10 hours on DBLP5 and DBLP10.

For MEGA, we set a; = 1 for all i =1,---p, 8; =1 for all
j=1,--+,q, and v; = max(S;) as described in Section 4.3.
In MEGA, we initialize H using hGraclus as described in Sec-
tion 4.6. Among the baseline methods, PCLDC and JNMF allow
us to provide an initial H. We provide the same H we used
for initializing MEGA with these methods. Since all the meth-
ods require the number of clusters as an input, we provide
the ground-truth number of clusters with each of the meth-
ods. To measure the clustering performance, we compute
the F1, accuracy, and the normalized mutual information
(NMI) scores which are also used in [27] and [35]. We com-
pute the best matching between the ground-truth clusters
and the algorithmic clusters to compute these metrics.

6.3 Quality Evaluation

Figure 2 shows the average F1, accuracy, and NMI scores
of the 14 methods (MEGA and the 13 baseline methods in-
troduced in Section 6.2) on the five real-world datasets in-
troduced in Section 6.1. On CORA, MCCC returned an SVD
error message. On DBLP5 and DBLP10, PCLDC, CMMC, MCCC,
and SMACD took more than 10 hours to complete five runs.
On DBLP10, LGC and MLAN required more than 128 GB mem-
ory, so we could not report the results of these methods.

Let us first briefly mention the performances of the hyper-
graph clustering methods that only consider the hypergraph
structure: hGraclus, hMetis, SPC, and SWS. While we focus
on the hypergraph normalized cut and run time in Table 1
to evaluate these methods, Figure 2 shows the similarity be-
tween the algorithmic solutions and the ground-truth clus-
ters. Even though the hypergraph normalized cut is one of
the standard objectives for hypergraph clustering, and gen-
erally, an objectively better solution is expected to be closer
to the ground-truth, it is not theoretically guaranteed that
an objectively better solution always yields a closer solu-
tion to the ground-truth. This is why there can be some
discrepancies between Table 1 and Figure 2.
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Figure 2: Higher F1, accuracy, and NMI scores indicate better clustering results. In terms of identifying the ground-truth clusters,
MEGA outperforms the other 13 different state-of-the-art methods on the five real-world datasets presented in Section 6.1. On CORA, MCCC
returned an SVD error message. On DBLP5 and DBLP10, PCLDC, CMMC, MCCC, and SMACD took more than 10 hours to complete five runs.
On DBLP10, LGC and MLAN required more than 128 GB memory, so we could not report the results of these methods.
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Figure 3: The average F'1, accuracy, and NMI scores of MLAN, PLCC, and MEGA with different levels of supervision on DBLP5. MEGA achieves
better clustering performance than the other semi-supervised methods at all different levels of supervision.

Table 5: Clustering performance of CMMC and MEGA on CORA with
different numbers of pairwise constraints.

Table 7: Performance of MEGA with different parameters and the
two most competitive baseline methods on DBLPS

F1 (%) Accuracy (%) NMI (%)
Constraints  CMMC MEGA CMMC MEGA CMMC MEGA
3,000 33.78 60.61 35.61 62.77 15.71 43.58
4,000 38.43 62.45 40.32 64.65 1991 45.65
5,000 37.58 63.41 39.48 65.75 19.06 48.04
6,000 39.08 65.40 41.45 67.95 20.26 50.64
7,000 35.96 66.98 38.44 69.56 19.28 52.57

MEGA PLCC JNMF
X;(21) 03 03 03 1.0 1.0 1.0
Xz (@2) 03 03 10 03 10 10
Sr(py_ 03 10 10 10 03 10
F1 (%)~ ~87.48 89.0589.T2786.87 86.4286.89765.6949.61

ACC (%) 86.45 87.98 88.05 85.75 85.30 85.77 62.71 51.98
NMI (%) 66.88 69.97 70.11 65.92 65.05 65.96 46.62 37.64

Table 6: Performance of MEGA with P and S on CORA. We use P
with 30% supervision, and use S with 7,000 pairwise constraints.

Table 8: Performance of MEGA with different parameters and the
two most competitive baseline methods on GENE

F1 (%) Accuracy (%) NMI (%) MEGA MLAN PLCC
MEGA-P 68.58 + 0.97 71.29 £ 1.06 46.98 £ 1.20 X1 (1) 0.3 0.3 0.3 1.0 1.0 1.0
MEGA-S 66.98 + 1.29 69.56 £+ 1.18 52.57 £ 1.19 S1 (1) 0.3 0.3 1.0 0.3 1.0 1.0
Sy (B2) 03 10 1.0 1.0 03 1.0

In Figure 2, we see that MEGA outperforms the other 13 dif- "F1 (%)~ 57.65 56.95 56.32756.33 57.27 58.50 48.93 43.33~

ferent state-of-the-art methods. It is encouraging that MEGA
shows good performance even though all the parameters are
set to be ones (i.e., we do not tune the parameters of MEGA).
By observing that MEGA shows the best performance in iden-
tifying the ground-truth clusters, we note that MEGA is able
to appropriately take into account multiple views of the data
and properly incorporate partial supervision into the clus-
tering model. Also, the MEGA objective function proposed
in (12) is able to more effectively capture the structure of
the ground-truth clusters than the other baselines.

We test the performance of the semi-supervised methods
by varying the levels of supervision provided by P and S.
Figure 3 shows the average F1, accuracy, and NMI scores of
MLAN, PLCC, and MEGA which are the models that incorporate
the supervision using P on DBLP5. We vary the supervision
from 5% to 40%. As the level of supervision increases, the
performance of these methods increases as expected. We see
that MEGA achieves better clustering results than MLAN and
PLCC for all different levels of supervision. We conduct sim-
ilar analysis for the semi-supervised methods that require
pairwise constraints (i.e., the semi-supervised methods with
S). For MEGA, we use S for this analysis, and set all the
parameters to be ones. Recall that MEGA can incorporate
partial supervision using either P or S as described in Sec-
tion 4.3. Table 5 shows the average F1, accuracy, and NMI
scores on CORA. Since MCCC returned an error on CORA, we
focus on CMMC. We note that MEGA outperforms CMMC given
the same number of pairwise constraints. On CORA, when we
use S with 7,000 pairwise constraints for MEGA, denoted by
MEGA-S in Table 6, its performance is close to that of MEGA-P
where we use P with 30% supervision shown in Table 6.

We set all the parameters of MEGA to be ones in the above
experiments. Now, we test how the performance of MEGA
varies according to the parameters. Table 7 shows the per-
formance of MEGA with different parameters and the perfor-
mance of the two most competitive baseline methods, PLCC
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ACC (%) 60.10 59.47 58.41 59.92 60.41 61.22 51.94 51.77
NMI (%) 23.70 22.07 18.90 19.76 20.41 21.36 9.72 14.74

Table 9: Run time (in seconds) on QUERY.

hGraclus 0.005 SPC 0.131 SEC 0.160 LGC 0.168
MEGA 0.544 JNMF 0.626 MLAN 1.06 hMetis 1.23
PLCC  3.92 PCLDC 6.50 MCCC 46.9 sws  51.3

SMACD 727.5 CMMC 1279.3

and JNMF, on DBLP5. For MEGA, we vary the three param-
eters, a1, a2, and 1 while all other parameters are set to
be ones. Table 8 shows the performance of MEGA, and the
two most competitive baseline methods, MLAN and PLCC, on
GENE. For MEGA, we vary the parameters, ai, 1, and [z,
and all other parameters are set to be ones. We see that the
performance of MEGA does not largely fluctuate depending
on the parameters, and MEGA consistently outperforms the
baseline methods.

Finally, Table 9 shows the run time (in seconds) of MEGA
and the 13 baseline methods on QUERY. We see that hGraclus
is the fastest method whereas MEGA is the fifth fastest method
among the 14 methods.

7. CONCLUSIONS AND FUTURE WORK

We develop a semi-supervised clustering method for hy-
pergraphs in which we can easily incorporate multiple at-
tributes and content of the objects as well as diverse rela-
tionships among the objects. According to our extensive
tests, the proposed method MEGA significantly outperforms
all other state-of-the-art methods on real-world datasets in
terms of identifying the ground-truth clusters. We plan to
extend our model to non-exhaustive, overlapping cluster-
ing [34,35] and develop more scalable solution procedures.

Acknowledgment

This work was supported by NAVER Corp. and NRF of Ko-
rea (2019R1C1C1008956, 2018R1A5A1059921) to J. Whang,
and by the US NSF grant OAC-1642410 to H. Park.



8.
[

[12]

[13]

[14]

[15]

REFERENCES

S. Basu, M. Bilenko, and R. Mooney. A probabilistic
framework for semi-supervised clustering. In
Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 5968, 2004.

D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, 1999.

S. Bickel and T. Scheffer. Multi-view clustering. In
Proceedings of the 4th IEEE International Conference
on Data Mining, pages 19-26, 2004.

L. Chen, Y. Gao, Y. Zhang, S. Wang, and B. Zheng.
Scalable hypergraph-based image retrieval and tagging
system. In Proceedings of the 34th IEEE International
Conference on Data Engineering, pages 257—268, 2018.
1. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph
cuts without eigenvectors a multilevel approach. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, pages 1944-1957, 2007.

R. Du, B. Drake, and H. Park. Hybrid clustering
based on content and connection structure using joint
nonnegative matrix factorization. Journal of Global
Optimization, pages 1-17, 2017.

R. Du, D. Kuang, B. Drake, and H. Park. DC-NMF:
Nonnegative matrix factorization based on
divide-and-conquer for fast clustering and topic
modeling. Journal of Global Optimization,
68(4):777-798, 2017.

L. Grippo and M. Sciandrone. On the convergence of
the block nonlinear gauss—seidel method under convex
constraints. Operations Research Letters, pages
127-136, 2000.

E. Gujral and E. E. Papalexakis. SMACD:
semi-supervised multi-aspect community detection. In
Proceedings of the 2018 SIAM International
Conference on Data Mining, pages 702-710, 2018.

S. Giinnemann, I. Farber, M. Riidiger, and T. Seidl.
SMVC: Semi-supervised multi-view clustering in
subspace projections. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 253-262, 2014.

K. Han, F. Gui, X. Xiao, J. Tang, Y. He, Z. Cao, and
H. Huang. Efficient and effective algorithms for
clustering uncertain graphs. PVLDB, 12(6):667-680,
2019.

G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, pages
359-392, 1999.

G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. In Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference,
pages 343-348, 1999.

J. Kim, Y. He, and H. Park. Algorithms for
nonnegative matrix and tensor factorizations: A
unified view based on block coordinate descent
framework. Journal of Global Optimization, pages
285-319, 2014.

J. Kim and H. Park. Fast nonnegative matrix
factorization: An active-set-like method and
comparisons. SIAM Journal on Scientific Computing,
pages 3261-3281, 2011.

710

(16]

(17]

(19]

[20]

(32]

D. Kuang, C. Ding, and H. Park. Symmetric
nonnegative matrix factorization for graph clustering.
In Proceedings of the 2012 SIAM International
Conference on Data Mining, pages 106—117, 2012.

D. Kuang, S. Yun, and H. Park. SymNMF:
Nonnegative low-rank approximation of a similarity
matrix for graph clustering. Journal of Global
Optimization, 62(3):545-574, 2015.

B. Kulis, S. Basu, I. S. Dhillon, and R. Mooney.
Semi-supervised graph clustering: a kernel approach.
Machine Learning, pages 1-22, 2009.

H. Lee, J. Yoo, and S. Choi. Semi-supervised
nonnegative matrix factorization. IEEE Signal
Processing Letters, pages 4-7, 2010.

T. Li, C. Ding, and M. Jordan. Solving consensus and
semi-supervised clustering problems using nonnegative
matrix factorization. In Proceedings of the 7th IEEE
International Conference on Data Mining, pages
577-582, 2007.

H. Liu, T. Liu, J. Wu, D. Tao, and Y. Fu. Spectral
ensemble clustering. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 715-724, 2015.

H. Liu, Z. Tao, and Y. Fu. Partition level constrained
clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 2469-2483, 2018.

J. Liu, C. Wang, J. Gao, and J. Han. Multi-view
clustering via joint nonnegative matrix factorization.
In Proceedings of the 2018 SIAM International
Conference on Data Mining, pages 252260, 2013.

U. Luxburg. A tutorial on spectral clustering.
Statistics and Computing, pages 395-416, 2007.

J. Motl and O. Schulte. The CTU prague relational
learning repository.
relational.fit.cvut.cz/dataset/CORA, 2015.

N. Natarajan and I. S. Dhillon. Inductive matrix
completion for predicting gene—disease associations.
Bioinformatics, pages 160-i68, 2014.

F. Nie, G. Cai, and X. Li. Multi-view clustering and
semi-supervised classification with adaptive
neighbours. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence, pages 24082414,
2017.

P. Purkait, T. Chin, A. Sadri, and D. Suter.
Clustering with hypergraphs: The case for large
hyperedges. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1697-1711, 2017.

S. Saito, D. Mandic, and H. Suzuki. Hypergraph
p-Laplacian: A differential geometry view. In
Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, pages 3984-3991, 2018.

Y. Sun, C. C. Aggarwal, and J. Han. Relation
strength-aware clustering of heterogeneous
information networks with incomplete attributes.
PVLDB, 5(5):394-405, 2012.

S. Tan, Z. Guan, D. Cai, X. Qin, J. Bu, and C. Chen.
Mapping users across networks by manifold alignment
on hypergraph. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, pages 159-165,
2014.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
ArnetMiner: Extraction and mining of academic social



networks. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 990-998, 2008.

Z. Tian, T. Hwang, and R. Kuang. A
hypergraph-based learning algorithm for classifying
gene expression and arrayCGH data with prior
knowledge. Bioinformatics, pages 28312838, 2009.

J. J. Whang, D. F. Gleich, and I. S. Dhillon.
Overlapping community detection using
neighborhood-inflated seed expansion. IEEE
Transactions on Knowledge and Data Engineering,
28(5):1272-1284, 2016.

J. J. Whang, Y. Hou, D. F. Gleich, and I. S. Dhillon.
Non-exhaustive, overlapping clustering. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 41(11):2644-2659, 2019.

J. J. Whang, X. Sui, and I. S. Dhillon. Scalable and
memory-efficient clustering of large-scale social
networks. In Proceedings of the 12th IEEE
International Conference on Data Mining, pages
705-714, 2012.

S. Wild, J. Curry, and A. Dougherty. Improving
non-negative matrix factorizations through structured
initialization. Pattern Recognition, pages 2217-2232,
2004.

Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A
model-based approach to attributed graph clustering.
In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data,

711

(41]

42]

(44]

pages 505-516, 2012.

T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link
and content for community detection: A
discriminative approach. In Proceedings of the 15th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
927-936, 2009.

J. Yi, L. Zhang, R. Jin, Q. Qian, and A. Jain.
Semi-supervised clustering by input pattern assisted
pairwise similarity matrix completion. In Proceedings
of the 30th International Conference on Machine
Learning, pages 1400-1408, 2013.

H. Zeng and Y. Cheung. Semi-supervised maximum
margin clustering with pairwise constraints. I[EFE
Transactions on Knowledge and Data Engineering,
pages 926-939, 2011.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and

B. Scholkopf. Learning with local and global
consistency. In Proceedings of the 16th International
Conference on Neural Information Processing
Systems, pages 321-328, 2003.

D. Zhou, J. Huang, and B. Schélkopf. Learning with
hypergraphs: Clustering, classification, and
embedding. In Proceedings of 19th Advances in Neural
Information Processing Systems, pages 1601-1608,
2006.

Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering
based on structural/attribute similarities. PVLDB,
2(1):718-729, 2009.



