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ABSTRACT
Knowledge graph embedding aims to represent entities and rela-

tions in a continuous feature space while preserving the structure

of a knowledge graph. Most existing knowledge graph embedding

methods either focus only on a flat structure of the given knowl-

edge graph or exploit the predefined types of entities to explore

an enriched structure. In this paper, we define the metagraph of

a knowledge graph by proposing a new affinity metric that mea-

sures the structural similarity between entities, and then grouping

close entities by hypergraph clustering. Without any prior infor-

mation about entity types, a set of semantically close entities is

successfully merged into one super-entity in our metagraph repre-

sentation. We propose the metagraph-based pre-training model of

knowledge graph embedding where we first learn representations

in the metagraph and initialize the entities and relations in the

original knowledge graph with the learned representations. Experi-

mental results show that our method is effective in improving the

accuracy of state-of-the-art knowledge graph embedding methods.

CCS CONCEPTS
• Computing methodologies→ Semantic networks; • Infor-
mation systems → Clustering.
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1 INTRODUCTION
A knowledge graph represents human knowledge as a directed

graph where a vertex indicates an entity and a directed edge in-

dicates a relation between two entities. Each fact is represented

as a triplet which consists of a head entity, a relation, and a tail

entity. Knowledge graph embedding is a representation learning
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technique which projects entities and relations into a continuous

feature space. Once the entities and the relations are represented as

feature vectors, we can utilize these feature vectors to solve diverse

problems such as link prediction and triplet classification [26].

A number of different knowledge graph embedding methods

have been proposed over the recent years. However, most existing

methods focus only on a flat structure of a knowledge graph [2, 13,

23, 25, 31]. That is, they just consider an individual entity indepen-

dently, and do not consider a global view or a clusterable structure

of a knowledge graph. Some methods have attempted to incor-

porate entity types into knowledge graph embedding [10, 12, 29].

However, all these methods rely on predefined entity types which

are manually and heuristically curated with extra cost [12]. Those

entity types are sometimes incomplete, i.e., only a subset of entities

has types, as noted in [10] or available only for certain datasets [29].

Inspired by the fact that there exist many semantically close

entities in a knowledge graph, we hypothesized that those semantic

closeness should be able to be inferred by the structural similar-

ity between entities. For example, if two entities share the same

tail entity with the same relation, they might belong to the same

semantic category. By taking into account this kind of patterns

accumulatively, we can appropriately define the affinity between

entities. We formalize this idea by introducing the concept of hyper-

graph that allows us to connect an arbitrary number of vertices by a

hyperedge (Section 3.1). Once a knowledge graph is converted into

the corresponding hypergraph, we apply a hypergraph clustering

scheme with appropriate normalization to group similar entities

(Section 3.2). Once groups of similar entities are detected, we form

super-entities by merging entities in the same group. That is, each

cluster is now transformed into a super-entity. To define triplets

between super-entities, we consider the connections between each

pair of head and tail entities from one super-entity to another. We

define the metagraph of a knowledge graph to be the graph that

consists of the super-entities and the relations between them. The

metagraph can be considered as a compact representation of the

knowledge graph, which enables us to capture the core structure of

the graph (Section 3.3). Figure 1 summarizes the overall procedure.

By learning representations of entities and relations in the meta-

graph, we can efficiently initialize the entities and relations in the

original knowledge graph by simply projecting the learned repre-

sentations into the corresponding entities and relations. Since all

the entities belonging to the same group have the same initial rep-

resentations by this projection, it is naturally encouraged that the

entities in the same group have close representation vectors, which

is desirable because those entities are likely to be semantically close

(Section 3.4). Experimental results show that our metagraph-based

pre-training strategy improves the link prediction performance of

state-of-the-art knowledge graph embedding methods.

Short Research Paper III  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2212

https://doi.org/10.1145/3404835.3463072
https://doi.org/10.1145/3404835.3463072


(a) Knowledge Graph (KG) (b) Hypergraph of the KG (c) Grouping Entities (d) Metagraph of the KG

Figure 1: From a Knowledge Graph to its Metagraph. (a): the original knowledge graph. (b): the hypergraph representation of
the knowledge graph where each hyperedge connects a set of entities that share the same head or the same tail with the same
relation (Section 3.1). (c): similar entities are grouped by hypergraph clustering (Section 3.2). (d): the metagraph of the given
knowledge graph where each group is considered to be a super-entity and representative between-group triplets are likely to
be preserved while unrepresentative triplets are likely to be dropped (Section 3.3).

2 RELATEDWORK
There have been some attempts to identify entity types in knowl-

edge graphs [16, 18, 19, 34]. We note that these existing meth-

ods assume that the entity types are predefined [16, 34] or some

rich features are provided to infer the semantic categories of enti-

ties [18, 19]. On the other hand, our hypergraph-based clustering

scheme does not require any prior information about entity types

or other external features. Furthermore, our method can create

different numbers of clusters depending on a desired granularity.

The concept of metagraph has been investigated in the context

of heterogeneous network embedding [7, 8, 32] where different

node types are already defined in the dataset. To incorporate het-

erogeneous node types into a network embedding model, various

types of metagraphs [8, 32] and metapaths [7] have been proposed.

Different from these methods [7, 8, 32], our method automatically

constructs themetagraph based on the structural similarity between

entities. To the best of our knowledge, our work is the first study

that introduces the concept of metagraph to knowledge graphs.

In practice, knowledge graph embedding models are usually ini-

tialized by random Gaussian distributions [11, 24] or Glorot initial-

ization [9] because existing pre-training models require a rich lan-

guage model [33] such as BERT [6] or extra lexical descriptions [14]

or word embedding [22]. On the other hand, our metagraph-based

initialization does not require this extra information.

Multi-level graph embedding framework has been recently stud-

ied in the context of graph embedding [4, 5], albeit has not been

considered for knowledge graphs. While both HARP [4] and Graph-

Zoom [5] deal with standard homogeneous graphs, our method

targets knowledge graphs which make the coarsening step much

more challenging due to diverse types of entities and relations.

We believe that we can easily extend our method to a multi-level

framework by recursively applying the clustering operation, which

might allow us to further improve the performance of our method.

3 META-KGE: METAGRAPH-BASED
KNOWLEDGE GRAPH EMBEDDING

We propose the metagraph-based knowledge graph embedding

framework which consists of four steps, each of which is described

in the following subsection.

Algorithm 1: Converting a knowledge graph into a hyper-
graph where similar entities are connected via a hyperedge.
Input: a knowledge graph𝐺 = (V, R, E)
Output: a hypergraph𝐺𝐻 = (V, E𝐻 ) where E𝐻 is a multiset

1: Initialize E𝐻 = ∅.
2: for 𝑣𝑖 ∈ V do
3: R𝑖 = {𝑟 | (ℎ, 𝑟, 𝑣𝑖 ) ∈ E ∨ (𝑣𝑖 , 𝑟 , 𝑡 ) ∈ E, ℎ ∈ V, 𝑟 ∈ R, 𝑡 ∈ V}.
4: for 𝑟 𝑗 ∈ R𝑖 do
5: S𝐻 = {ℎ | (ℎ, 𝑟 𝑗 , 𝑣𝑖 ) ∈ E, ℎ ∈ V}.
6: S𝑇 = {𝑡 | (𝑣𝑖 , 𝑟 𝑗 , 𝑡 ) ∈ E, 𝑡 ∈ V}.
7: if |S𝐻 | > 1 then
8: E𝐻 = E𝐻 ∪ {S𝐻 }.
9: end if
10: if |S𝑇 | > 1 then
11: E𝐻 = E𝐻 ∪ {S𝑇 }.
12: end if
13: end for
14: end for

3.1 Defining Affinity between Entities by
Hypergraph Representation

Entities in a knowledge graph can be grouped such that seman-

tically close entities are assigned to the same group. Since this

semantic closeness is reflected on the structure of the graph, we

can define affinity between entities based on the structural simi-

larity. A knowledge graph 𝐺 is defined by three setsV , R, and E
where V is a set of entities, R is a set of relations, and E is a set

of triplets. Assume that there are 𝑛 different entities and 𝑛′ differ-
ent relations. Formally, a knowledge graph can be represented by

𝐺 = (V,R, E) where V = {𝑣1, 𝑣2, · · · , 𝑣𝑛}, R = {𝑟1, 𝑟2, · · · , 𝑟𝑛′},
and E = {(ℎ, 𝑟, 𝑡) | ℎ ∈ V, 𝑟 ∈ R, 𝑡 ∈ V}. A triplet (ℎ, 𝑟, 𝑡) consists
of a head entity ℎ, a relation 𝑟 , and a tail entity 𝑡 . By introduc-

ing the concept of hyperedge which can connect more than two

nodes, we connect a set of entities via a hyperedge if they share

the same head entity with the same relation or if they share the

same tail entity with the same relation. For example, in Figure 1(b),

the yellow hyperedge that includes ‘TN’, ‘MN’, ‘MO’, ‘IL’ is created

because these four entities all share the head entity ‘rv. Mississippi’

with the same relation ‘RiverCross’. By Algorithm 1, we convert a

knowledge graph into a hypergraph so that similar entities are con-

nected via a hyperedge. Let 𝑯 indicate the incidence matrix of the
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Table 1: Top 5 most similar entities to the target entity according to our affinity metric defined in (1) on NELL-995

Target entity Top 5 most similar entities to the target entity (ties are all included)

emotion_thankfulness emotion_graditude, emotion_admiration, emotion_happiness, emotion_joy, emotion_deep_love, emotion_jealousy, emotion_thanks

software_microsoft_word software_internet_explorer, software_microsoft_frontpage, software_microsoft_powerpoint, software_notepad, software_autocad

sport_american_football sport_ski, sport_scout, sport_skiing, sport_golf, sport_judo

university_harvard university_harvard_university, university_harvard_law, school_oxford, university_harvard_law_school, university_john_f__kennedy_school

furniture_queen_bed furniture_queen, furniture_king_beds, furniture_king_size_beds, furniture_twin_beds, furniture_queen_size_beds

resulting hypergraph 𝐺𝐻 , and assume that there are𝑚 hyperedges

in 𝐺𝐻 . Each entry of 𝑯 ∈ {0, 1}𝑛×𝑚 is defined to be ℎ𝑖 𝑗 = 1 if an

entity 𝑣𝑖 is included in the 𝑗-th hyperedge, and ℎ𝑖 𝑗 = 0 otherwise.

Also, let us define the degree diagonal matrix 𝑫 ∈ R𝑚×𝑚
+ where

𝑑𝑖𝑖 is the number of entities included in the 𝑖-th hyperedge. We

define the affinity matrix𝑨 to be𝑨 B 𝑯𝑫−2𝑯𝑇
which encodes the

pairwise similarity where each entry 𝑎𝑖 𝑗 of 𝑨 indicates the affinity

between 𝑣𝑖 and 𝑣 𝑗 , i.e., 𝑎𝑖 𝑗 B
∑
𝑙 ∈L 1/𝑑𝑙 2 where L indicates the

set of hyperedges which contain 𝑣𝑖 and 𝑣 𝑗 simultaneously, and 𝑑𝑙
indicates the number of entities in the hyperedge 𝑙 . The intuition of

this definition is that we assign a high affinity score between two

entities if they are connected by multiple hyperedges (i.e., a large

L) or they appear together in rare patterns, i.e., they are connected

by a hyperedge that contains only a few entities (i.e., a small 𝑑𝑙 ).
1

3.2 Grouping Entities by Optimizing the
Hypergraph Normalized Cut

Once we convert a knowledge graph into the hypergraph𝐺𝐻 , opti-

mizing the hypergraph normalized cut [27, 35] on𝐺𝐻 is mathemat-

ically equivalent to optimizing the standard normalized cut [21]

on 𝑨 if we assume that each hyperedge has a weight of 1/𝑑𝑙 . By
considering the entity-level hypergraph normalized cut, we further

refine the pairwise similarity as follows:

𝑎𝑖 𝑗 =
𝑎𝑖 𝑗∑
𝑘 𝑎𝑖𝑘

+
𝑎𝑖 𝑗∑
𝑘 𝑎𝑘 𝑗

(1)

which indicates that we normalize the affinity score between two

entities by their affinity scores to their incident entities. Table 1

shows some examples of similar entities according to our affin-

ity metric on NELL-995 dataset [30] where we randomly choose

target entities and list up five most similar entities to the target

entities including all the ties. We see that the entities in the lists

are semantically quite similar to the target entities.

Using (1) as the similarity metric, we apply an agglomerative

hierarchical clustering with the average linkage strategy [17, 20]

to group similar entities together. We cluster the given graph into

⌊𝑛𝑝⌋ clusters where 𝑛 is the number of entities and 0 < 𝑝 < 1.

Figure 1(c) shows an example of our clustering result when 𝑝 = 0.7.

Each grey box indicates a cluster, and we see that those clusters are

reasonably formed by merging similar entities.

3.3 Metagraph Construction
Once similar entities are grouped together, each cluster is consid-

ered to be a super-entity. Even though an entity is not merged

into any cluster after the clustering step, we also call this sin-

gleton as a cluster or a super-entity which only includes itself.

1
If a hyperedge contains 𝑑𝑙 entities, the hyperedge introduces 𝑑𝑙

2
non-zero entries in

𝑯𝑯𝑇
. To let each hyperedge introduce the same affinity score in total, we normalize

the introduced non-zero entries by 𝑑𝑙
2
.

Table 2: Datasets and Metagraph Information

Train set Validation set Test set

|𝑉 | |𝑅 | |𝐸 | |𝑉 | |𝑅 | |𝐸 | |𝑉 | |𝑅 | |𝐸 |

FB15K

Original KG 14,951 1,345 483,142 13,292 916 50,000 13,584 961 59,071

Metagraph 10,387 1,142 224,824 8,377 686 21,778 8,611 703 25,433

NELL-995

Original KG 74,432 200 149,678 765 12 543 3,747 12 3,992

Metagraph 48,693 200 67,568 382 12 261 2,387 12 2,118

WN18

Original KG 40,943 18 141,442 7,802 18 5,000 7,845 18 5,000

Metagraph 27,250 18 63,423 3,695 18 2,234 3,689 18 2,227

Let C𝑖 indicate the 𝑖-th super-entity where 𝑖 = 1, · · · , ⌊𝑛𝑝⌋. Let
𝐺𝑀 = (V𝑀 ,R𝑀 , E𝑀 ) be the metagraph of a given knowledge

graph. Each super-entity C𝑖 is considered as an individual entity in

𝐺𝑀 . Given super-entities C𝑖 and C𝑗 , we add a triplet (C𝑖 , 𝑟 , C𝑗 ) to
E𝑀 with the probability of

|{(ℎ, 𝑟, 𝑡) |ℎ ∈ C𝑖 ∧ 𝑡 ∈ C𝑗 ∧ 𝑟 ∈ R}|
|C𝑖 | |C𝑗 |

(2)

which indicates that a triplet (C𝑖 , 𝑟 , C𝑗 ) is likely to be added to E𝑀

if entities in C𝑖 have many connections to those in C𝑗 with the

relation 𝑟 . Conversely, if there are few connections from C𝑖 to C𝑗

with the relation 𝑟 , (C𝑖 , 𝑟 , C𝑗 ) is likely to be dropped in E𝑀 . As a

result, we encourage representative triplets to be preserved while

unrepresentative triplets to be dropped in 𝐺𝑀 . Also notice that

we drop within-cluster triplets and only consider between-cluster

triplets when we create 𝐺𝑀 . Figure 1(d) shows an example of this

process. The relation ‘EmptyInto’ is omitted because it only appears

within a group. The relation from ‘Carl Sagan’ to ‘univ. Chicago’ is

probabilistically dropped with the probability of 1/2.

3.4 Pre-training and Fine-tuning of a
Knowledge Graph Embedding Model

Since the metagraph simplifies the structure of the original knowl-

edge graph, we can efficiently run a knowledge graph embedding

method on the metagraph. Once we learn the representations of

super-entities and the relations on the metagraph, we initialize

the corresponding entities and relations in the knowledge graph

with the learned representations. In this process, entities in the

same super-entity are initialized with the same representations.

The omitted entities and relations in the metagraph are randomly

initialized in the original knowledge graph. Once we initialize the

representations in the original knowledge graph, we further fine-

tune the representations of individual entities and relations to learn

a finer structure of the knowledge graph.

4 EXPERIMENTAL RESULTS
We show experimental results of our method on the link prediction

task using three real-world datasets: FB15K [1], NELL-995 [3, 30],

and WN18 [15] shown in Table 2. We notice that NELL-995 is much

sparser than the other two datasets. As described in Section 3.2,

we cluster a given knowledge graph into ⌊𝑛𝑝⌋ clusters to create a
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Table 3: Hyperparameters of each method

FB15K NELL-995 WN18

TransE 𝛼 = 5, 𝛾 = 5 𝛼 = 5, 𝛾 = 5 𝛼 = 0.1, 𝛾 = 10

TransE@mgraph 𝛼 = 5, 𝛾 = 5 𝛼 = 5, 𝛾 = 10 𝛼 = 0.1, 𝛾 = 10

meta-TransE 𝛼 = 5, 𝛾 = 2 𝛼 = 1, 𝛾 = 5 𝛼 = 0.1, 𝛾 = 10

DistMult 𝛼 = 0.01, 𝛽 = 0.1 𝛼 = 0.1, 𝛽 = 0.1 𝛼 = 0.5, 𝛽 = 2

DistMult@mgraph 𝛼 = 0.01, 𝛽 = 0.1 𝛼 = 0.1, 𝛽 = 0.1 𝛼 = 1, 𝛽 = 5

meta-DistMult 𝛼 = 0.1, 𝛽 = 0.1 𝛼 = 0.1, 𝛽 = 0.1 𝛼 = 1, 𝛽 = 1

RotatE 𝛼 = 5 · 10−5 , 𝛾 = 12, 𝑠 = 1 𝛼 = 10
−4

, 𝛾 = 12, 𝑠 = 2 𝛼 = 10
−4

, 𝛾 = 3, 𝑠 = 0.5

RotatE@mgraph 𝛼 = 10
−4

, 𝛾 = 9, 𝑠 = 0.5 𝛼 = 10
−4

, 𝛾 = 3, 𝑠 = 1 𝛼 = 10
−4

, 𝛾 = 3, 𝑠 = 0.1

meta-RotatE 𝛼 = 5 · 10−5 , 𝛾 = 12, 𝑠 = 1 𝛼 = 10
−4

, 𝛾 = 12, 𝑠 = 2 𝛼 = 10
−4

, 𝛾 = 3, 𝑠 = 0.5

metagraph. We set 𝑝 = 0.7 for FB15K and WN18 whereas 𝑝 = 0.85

for NELL-995 because these 𝑝 values allow the size of the metagraph

to be about half of the original knowledge graph in terms of the

number of triplets in the train set. We perform clustering only using

the train set. Table 2 shows the information about the metagraphs.

When we generate the validation and test sets for a metagraph, we

exclude triplets that already appear in the train set. For the test set,

we also exclude triplets that appear in the validation set.

In our metagraph-based knowledge graph embedding method,

we can apply any knowledge graph embedding models to learn the

representations on the metagraph as well as on the original knowl-

edge graph. We use three knowledge graph embedding methods:

TransE [2], DistMult [31], and RotatE [23] which are implemented

in OpenKE [11] where TransE [2] and DistMult [31] are initialized

by Glorot initialization [9] and RotatE [23] is initialized by the uni-

form distribution. We compare the performance of these models

with our metagraph-based pre-training methods which are denoted

by meta-TransE, meta-DistMult, and meta-RotatE, respectively. Ta-

ble 3 shows the best hyperparameters with respect to the validation

set where model@mgraph indicates the hyperparameters of the

corresponding model on the metagraph. In Table 3, 𝛼 indicates a

learning rate, 𝛽 indicates a regularization rate, 𝛾 indicates a margin,

and 𝑠 indicates the temperature of sampling.

We compare the performance of the methods on the link pre-

diction task. By following the conventional setting, we report the

‘filtered’ scores. Also, we use the standard evaluation metrics: Mean

Rank (MR), Mean Reciprocal Rank (MRR), and Hit@10. Details

about these settings and metrics can be found in [26]. A lower MR,

a higher MRR, and a higher Hit@10 score indicates a better result.

For each metric, we compute the gain as follows:

Gainmetric = 𝑠𝑖𝑔𝑛(metric) (𝑆𝑐𝑜𝑟𝑒model
− 𝑆𝑐𝑜𝑟𝑒

meta-model
)

𝑆𝑐𝑜𝑟𝑒
model

× 100%

where 𝑠𝑖𝑔𝑛(metric) is positive for MR and negative for MRR and

Hit@10, and 𝑆𝑐𝑜𝑟𝑒
model

is the score of the original knowledge graph

embedding method whereas 𝑆𝑐𝑜𝑟𝑒
meta-model

is the score of our

method. A positive gain indicates our method performs better than

the baseline method. Since each of these three metrics focuses on a

different perspective of the results, a method can get a good score in

terms of onemetric but get a bad score in terms of anothermetric. To

get a holistic interpretation of the experiments, we compute the total

gain by summing all the gains of the three metrics. If the total gain is

positive and large, it indicates ourmethod substantially outperforms

the baseline method. Table 4 shows the results where we repeat

experiments of each method for five times and report the average

scores. Using three different metrics, three different models, and

three different datasets, we see that our method (meta-model) shows

Table 4: Link Prediction Results. A positive gain indicates
our method (meta-model) outperforms the baseline.

MR (↓) MRR (↑) Hit@10 (↑) Total Gain (↑)

FB15K

TransE 89.0 0.596 0.733

meta-TransE 75.0 0.551 0.798
Gain (↑) 15.8% -7.5% 8.8% 17.1%

DistMult 106.4 0.414 0.644

meta-DistMult 143.7 0.541 0.786
Gain (↑) -35.0% 30.8% 21.9% 17.7%

RotatE 34.4 0.691 0.869

meta-RotatE 33.6 0.690 0.871
Gain (↑) 2.1% -0.1% 0.2% 2.2%

NELL-995

TransE 7202.4 0.278 0.477
meta-TransE 6507.5 0.287 0.434

Gain (↑) 9.6% 3.3% -9.1% 3.8%

DistMult 10312.7 0.298 0.388

meta-DistMult 8046.0 0.288 0.397
Gain (↑) 22.0% -3.6% 2.3% 20.7%

RotatE 9243.9 0.350 0.428

meta-RotatE 8618.7 0.352 0.435
Gain (↑) 6.8% 0.7% 1.8% 9.3%

WN18

TransE 210.4 0.521 0.943

meta-TransE 185.9 0.535 0.949
Gain (↑) 11.6% 2.7% 0.7% 15.0%

DistMult 301.1 0.320 0.550

meta-DistMult 289.1 0.463 0.732
Gain (↑) 4.0% 44.7% 33.2% 81.9%

RotatE 76.681 0.661 0.882

meta-RotatE 73.718 0.655 0.884
Gain (↑) 3.9% -0.9% 0.2% 3.2%

a positive gain for most of the cases. Even though our method gets

some negative gains on some datasets with some models in terms

of some metrics, the total gains are always positive. Therefore, our

experimental results show that our metagraph-based pre-training

is effective in improving the performance of the knowledge graph

embedding methods.

5 CONCLUSION & FUTUREWORK
We propose the metagraph-based pre-training method for knowl-

edge graph embedding. By proposing a new affinity metric that

measures the structural similarity between entities, we cluster enti-

ties without any predefined entity types. We define the metagraph

of a knowledge graph by extracting representative between-cluster

triplets. The pre-trained representations on the metagraph effec-

tively initialize the entities and relations in the original knowledge

graph leading to improving the link prediction performances. Our

affinity measures can be plugged into any kind of clustering pro-

cess besides the hierarchical agglomerative clustering. We plan to

extend our method to generate overlapping clusters [28] of entities

so that we can incorporate a more flexible and natural clustering

structure into knowledge graph embedding models.
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