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What is a spatio-temporal graph (STG)?

• A Spatio-Temporal Graph (STG) is a type of data structure designed to represent and analyze data 

which varies across both spatial and temporal dimensions.

• Urban traffic networks, weather data, skeleton-based human actions, etc.
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What is a spatio-temporal graph (STG)?

• Nodes represent entities with spatial properties, such as locations in a geographic area.

• Node features evolve over time.

• Edges represent relationships or interactions between entities.
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Definition of STG: 𝒢 = (𝒱, ℰ,𝒳)

• 𝒱 is a set of 𝑁 nodes and ℰ ⊂ 𝒱 × 𝒱 is a set of edges.

• 𝒳 = [𝐗1, 𝐗2, … , 𝐗𝜏] is a sequence of observed data for all nodes at each time step.

• 𝐗𝑡 ∈ ℝ𝑁×𝐷in represents the node features at time step 𝑡.

01 STG Forecasting

KAIST Big Data Intelligence Lab 4

𝑡

Time steps

𝑡 + 1 𝑡 + 𝜏

…
Traffic flow of
road networks

𝐗𝑡 𝐗𝑡+1 𝐗𝑡+𝜏



01 STG Forecasting

Problem definition

• STG forecasting aims to predict future observations for 𝑇′ time steps, given historical observations

for the previous 𝑇 time steps with 𝒢 = (𝒱, ℰ,𝒳).

• This is formulated as 𝐗𝑡−𝑇+1, … , 𝐗𝑡
𝑓(∙)

[𝐗𝑡+1, … , 𝐗𝑡+𝑇′].

• 𝑓(∙) represents the STG forecasting model. 
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02 Motivation

Long range spatio-temporal dependencies

• For STG forecasting, it is vital to capture the evolving behavior of individual nodes over time and 

how these changes propagate throughout the entire graph.

Significant computational overhead

• Self-attention mechanisms involve significant computational overhead and complexity.
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A New Spatio-Temporal Graph Forecasting Framework 
with Mamba-based Sequence Modeling

SpoT-Mamba



03 Preliminaries

State Space Model (SSM)*

• SSM defines the evolution of a dynamic system’s state with two equations.

• Given the input signal 𝑥(𝑡) ∈ ℝ, SSM transforms 𝑥(𝑡) into the latent state 𝐡 𝑡 ∈ ℝ𝐷. 

• 𝐀 ∈ ℝ𝐷×𝐷, 𝐁 ∈ ℝ𝐷×1, 𝐂 ∈ ℝ1×𝐷, and 𝐃 ∈ ℝ are learnable parameters.

• 𝑦 𝑡 ∈ ℝ is the output signal.
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Input function Output function

𝐡′ 𝑡 = 𝐀𝐡 𝑡 + 𝐁𝑥(𝑡)

𝑦 𝑡 = 𝐂𝐡 𝑡 + 𝐃𝑥(𝑡)

State equation

Output equation

Function-to-function

* A. Gu et al., “Efficiently modeling long sequences with structured state spaces”, ICLR, 2022



03 Preliminaries

Discretized SSM*

• The discretized SSM is defined in two forms: a recurrent form and a convolutional form.

• ഥ𝐀 and ഥ𝐁 are approximated learnable parameters with a step size 𝚫.

• 𝐿 denotes the sequence length and ∗ indicates the convolution operation.
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𝐡′ 𝑡 = 𝐀𝐡 𝑡 + 𝐁𝑥(𝑡)

𝑦 𝑡 = 𝐂𝐡 𝑡 + 𝐃𝑥(𝑡)

Continuous-time SSM

or
𝐡𝑡 = ഥ𝐀𝐡𝑡−1 + ഥ𝐁𝑥𝑡

𝑦𝑡 = ഥ𝐀𝐡𝑡

Recurrent form

Efficient inference for SSM

𝐲 = ഥ𝐊 ∗ 𝐱

ഥ𝐊 ∈ ℝ𝐿 = (𝐂𝐁, 𝐂𝐀𝐁,… , ത𝐂ഥ𝐀𝐿−1ഥ𝐁)

Convolutional form

Parallelizable training of SSM

Sequence-to-sequenceFunction-to-function

* A. Gu et al., “Efficiently modeling long sequences with structured state spaces”, ICLR, 2022



03 Preliminaries

Mamba**

• Mamba removes the linear time-invariant (LTI) constraint of SSMs with selection mechanisms.

• Selection mechanisms allow learnable parameters of SSMs to interact with the input sequence.

• 𝐁, 𝐂, and the step size 𝚫 become functions of the input sequence.
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𝐲 = ഥ𝐊 ∗ 𝐱

ഥ𝐊 ∈ ℝ𝐿 = (𝐂𝐁, 𝐂𝐀𝐁,… , ത𝐂ഥ𝐀𝐿−1ഥ𝐁)

Convolutional form

Parallelizable training of SSM

𝐡𝑡 = ഥ𝐀𝐡𝑡−1 + ഥ𝐁𝑥𝑡, 𝑦𝑡 = ഥ𝐀𝐡𝑡

Efficient inference for SSM

Recurrent form

𝐁 ≔ S𝐵 x = Linear𝑁 x  

𝐂 ≔ S𝐶 x = Linear𝑁(x) 

𝚫 ≔ Broadcast𝐷(Linear𝑁 x )

ഥ𝐀, ഥ𝐁 = Discretize(𝚫, 𝐀, 𝐁)

𝑦 = SSM(ഥ𝐀, ഥ𝐁, 𝐂)(x)

Mamba

Selectivity for SSM
Hardware-aware parallel algorithm

** A. Gu et al., “Mamba: Linear-time sequence modeling with selective state spaces”, arXiv, 2023



04 SpoT-Mamba: A New STG Forecasting Framework

Multi-way walk sequence

• Spatial sequences of nodes with three walk algorithms.

Walk sequence embedding

• Node embedding from node-specific walk sequences with Mamba blocks.

Temporal scan with Mamba blocks

• Capturing temporal dynamics with selective mechanisms.
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Spatial sequences of nodes with three well-known walk algorithms.

• SpoT-Mamba extracts diverse local and global structural information.

𝒗𝒊 𝒗𝒊
𝒗𝒊

04 Multi-Way Walk Sequence
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Bi-directional scan with Mamba blocks

• Embeddings for node-specific walk sequences by scanning each sequence.

• Capturing both short and long-range structural information from each node’s neighborhood.

• 𝐾 indicates the length of the walk sequence, and 𝐷 denotes the embedding dimension.

04 Walk Sequence Embedding
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𝒲𝐵𝐹𝑆 𝑖

𝒲𝐷𝐹𝑆 𝑖

𝒲𝑅𝑊 𝑖

𝐾

Multi-way walk sequence generationGraph structure Bi-directional scan

∈ ℝ𝐾×3𝐷 



Node-specific walk embeddings to node embeddings

• Pointwise convolution allows for incorporating representations of neighboring nodes in sequences.

• SpoT-Mamba integrates representations of sequences for a target node with MLP.

04 Walk Sequence Embedding
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Pointwise convolution Projection with MLP

∈ ℝ𝐾×3𝐷 ∈ ℝ𝐾 

∗
∈ ℝ3𝐷 

𝐰𝑖

∈ ℝ𝐷 

MLP

Bi-directional scan



Temporal scan with Mamba blocks

• Learnable embeddings are adopted to capture the repetitive patterns over time.

• SpoT-Mamba performs selective scans across the sequences of node embeddings with time axis.

04 STG Forecasting of SpoT-Mamba
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Spatial self-attention with Transformers and regression with MLP
• Incorporating global information from the entire graph at each time step through Transformers.

• MLP is applied to forecast the attributes of each node for future time steps.

• To ensure robustness to outliers, SpoT-Mamba is trained with Huber Loss.

04 STG Forecasting of SpoT-Mamba
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𝐙𝑡′

Future predictions 
for 𝑇′ time steps

Spatial Self-Attention and Regression

Spatial Transformer Regression Layer 𝐗𝑡′+𝑇

ℒHuber = σ𝑖,𝑡 𝑙𝑖,𝑡 where 𝑙𝑖,𝑡 = ൞

1

2
𝑥𝑖,𝑡 − 𝑦𝑖,𝑡

2
, if 𝑥𝑖,𝑡 − 𝑦𝑖,𝑡 < 𝛿

𝛿 𝑥𝑖,𝑡 − 𝑦𝑖,𝑡 −
1

2
𝛿 , otherwise



05 Experiments

• Dataset 

• PEMS04: A real-world traffic flow forecasting benchmark.

• Baselines

• GNN-based: DCRNN (ICLR 2018), GWNet (IJCAI 2019), MTGNN (KDD 2020)

AGCRN (NeurIPS 2020), GTS (ICLR 2021)

• Transformer-based: GMAN (AAAI 2020), STAEformer (CIKM 2023), PDformer (AAAI 2023)

• Others: STNorm (KDD 2021), HI (CIKM 2021), STID (CIKM 2022)
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|𝒱| |ℰ| #Time Steps Time Interval Time Range

307 338 16,992 5 min. 01/2018 – 02/2018



Traffic forecasting performance on PEMS04

05 Experiments

PEMS04 MAE(↓) RMSE(↓) MAPE(↓)

HI 42.35 61.66 29.92

GWNet 18.53 29.92 12.89

DCRNN 19.63 31.26 13.59

AGCRN 19.38 31.25 13.40

STGCN 19.57 31.38 13.44

GTS 20.96 32.95 14.66

MTGNN 19.17 31.70 13.37

STNorm 18.96 30.98 12.69

GMAN 19.14 31.60 13.19

PDformer 18.36 30.03 12.00

STID 18.38 29.95 12.04

STAEformer 18.22 30.18 11.98

SpoT-Mamba 18.31 30.11 11.86
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05 Experiments

Visualization of SpoT-Mamba’s predictions

• The blue line represents the ground truth, and the orange line denotes predicted traffic data.

• Four nodes are randomly selected in PEMS04.
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05 Experiments

Ablation study of SpoT-Mamba

• Mamba blocks of SpoT-Mamba are replaced with transformer encoders. 

• Transformer encoders do not recognize input sequence order by themselves.

• SpoT-Mamba does not apply learnable embeddings for walk sequences.

• As a result, transformer encoders struggle to perceive the order in walk sequences.
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Walk Scan Temporal Scan MAE(↓) RMSE(↓) MAPE(↓)

Transformer Transformer 18.41 30.32 12.12

Transformer Mamba 18.69 30.17 12.28

Mamba Transformer 18.29 30.06 11.93

Mamba Mamba 18.31 30.11 11.86



06 Conclusion

• Propose a new Spatio-Temporal graph forecasting framework with a 

Mamba-based sequence modeling architecture, SpoT-Mamba.

• Effectively capturing the long-range spatio-temporal dependencies in STGs.

• Extracting diverse local and global structures by utilizing BFS, DFS, and random walks.

• Promising results on the real-world traffic forecasting benchmark PEMS04.
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Thank You!

Our datasets and codes are available at:

https://github.com/bdi-lab/SpoT-Mamba 

You can find us at:

{cjh0507, heehyeon, amh0360, jjwhang}@kaist.ac.kr

https://bdi-lab.kaist.ac.kr

▲  GitHub ▲  BDILab

https://github.com/bdi-lab/SpoT-Mamba
https://bdi-lab.kaist.ac.kr/
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