### SpoT-Mamba: Learning Long-Range Dependency on Spatio-Temporal Graphs with Selective State Spaces

#### Jinhyeok Choi, Heehyeon Kim, Minhyeong An and Joyce Jiyoung Whang\* School of Computing, KAIST \* Corresponding Author

Spatio-Temporal Reasoning and Learning (STRL) Workshop at the 33rd International Joint Conference on Artificial Intelligence (IJCAI 2024)



### What is a spatio-temporal graph (STG)?

- A Spatio-Temporal Graph (STG) is a type of data structure designed to represent and analyze data which varies across both spatial and temporal dimensions.
  - Urban traffic networks, weather data, skeleton-based human actions, etc.



Traffic flow of road networks



### What is a spatio-temporal graph (STG)?

- Nodes represent entities with spatial properties, such as locations in a geographic area.
  - Node features evolve over time.
- Edges represent relationships or interactions between entities.



#### Spatio-Temporal Graph (STG)

Traffic flow of road networks

06:00 AM

### **Definition of STG:** $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{X})$

- $\mathcal{V}$  is a set of *N* nodes and  $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$  is a set of edges.
- $\mathcal{X} = [\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_{\tau}]$  is a sequence of observed data for all nodes at each time step.
  - $\mathbf{X}_t \in \mathbb{R}^{N \times D_{\text{in}}}$  represents the node features at time step t.





### **Problem definition**

- STG forecasting aims to predict future observations for T' time steps, given historical observations for the previous T time steps with G = (V, E, X).
  - This is formulated as  $[\mathbf{X}_{t-T+1}, ..., \mathbf{X}_t] \xrightarrow{f(\cdot)} [\mathbf{X}_{t+1}, ..., \mathbf{X}_{t+T'}].$
  - $f(\cdot)$  represents the STG forecasting model.





# **02** Motivation

### Long range spatio-temporal dependencies

# A New Spatio-Temporal Graph Forecasting Framework with Mamba-based Sequence Modeling

Self-attention mechanisms involve significant computational\_overhead and complexity.



Spatial dependencies

# SpoT-Mamba

Temporal dependencies



**Computational overheads** 



# **03** Preliminaries

### State Space Model (SSM)\*

- SSM defines the evolution of a dynamic system's state with two equations.
- Given the input signal  $x(t) \in \mathbb{R}$ , SSM transforms x(t) into the latent state  $\mathbf{h}(t) \in \mathbb{R}^{D}$ .
  - $\mathbf{A} \in \mathbb{R}^{D \times D}$ ,  $\mathbf{B} \in \mathbb{R}^{D \times 1}$ ,  $\mathbf{C} \in \mathbb{R}^{1 \times D}$ , and  $\mathbf{D} \in \mathbb{R}$  are learnable parameters.
  - $y(t) \in \mathbb{R}$  is the output signal.

#### **Function-to-function**



\* A. Gu et al., "Efficiently modeling long sequences with structured state spaces", ICLR, 2022



# **03** Preliminaries

### **Discretized SSM**\*

- The discretized SSM is defined in two forms: a recurrent form and a convolutional form.
  - $\overline{A}$  and  $\overline{B}$  are approximated learnable parameters with a step size  $\Delta$ .
  - *L* denotes the sequence length and \* indicates the convolution operation.



\* A. Gu et al., "Efficiently modeling long sequences with structured state spaces", ICLR, 2022



# **03** Preliminaries

### Mamba\*\*

- Mamba removes the linear time-invariant (LTI) constraint of SSMs with selection mechanisms.
  - Selection mechanisms allow learnable parameters of SSMs to interact with the input sequence.
  - B, C, and the step size  $\Delta$  become functions of the input sequence.



\*\* A. Gu et al., "Mamba: Linear-time sequence modeling with selective state spaces", arXiv, 2023



### **04** SpoT-Mamba: A New STG Forecasting Framework

#### Multi-way walk sequence

• Spatial sequences of nodes with three walk algorithms.

#### Walk sequence embedding

• Node embedding from node-specific walk sequences with Mamba blocks.

#### **Temporal scan with Mamba blocks**

• Capturing temporal dynamics with selective mechanisms.





# 04 Multi-Way Walk Sequence

### Spatial sequences of nodes with three well-known walk algorithms.

• SpoT-Mamba extracts diverse local and global structural information.





# **04** Walk Sequence Embedding

### **Bi-directional scan with Mamba blocks**

- Embeddings for node-specific walk sequences by scanning each sequence.
  - Capturing both short and long-range structural information from each node's neighborhood.
  - *K* indicates the length of the walk sequence, and *D* denotes the embedding dimension.





# **04** Walk Sequence Embedding

### Node-specific walk embeddings to node embeddings

- Pointwise convolution allows for incorporating representations of neighboring nodes in sequences.
- SpoT-Mamba integrates representations of sequences for a target node with MLP.





# **04** STG Forecasting of SpoT-Mamba

### **Temporal scan with Mamba blocks**

- Learnable embeddings are adopted to capture the repetitive patterns over time.
- SpoT-Mamba performs selective scans across the sequences of node embeddings with time axis.





# **04** STG Forecasting of SpoT-Mamba

### Spatial self-attention with Transformers and regression with MLP

- Incorporating global information from the entire graph at each time step through Transformers.
- MLP is applied to forecast the attributes of each node for future time steps.
- To ensure robustness to outliers, SpoT-Mamba is trained with Huber Loss.



Future predictions for T' time steps





- Dataset
  - *PEMS04*: A real-world traffic flow forecasting benchmark.

| $ \mathcal{V} $ | 8   | #Time Steps | Time Interval | Time Range        |
|-----------------|-----|-------------|---------------|-------------------|
| 307             | 338 | 16,992      | 5 min.        | 01/2018 - 02/2018 |

### • Baselines

• GNN-based: DCRNN (ICLR 2018), GWNet (IJCAI 2019), MTGNN (KDD 2020)

AGCRN (NeurIPS 2020), GTS (ICLR 2021)

- Transformer-based: GMAN (АААІ 2020), STAEformer (СІКМ 2023), PDformer (АААІ 2023)
- Others: STNorm (KDD 2021), HI (CIKM 2021), STID (CIKM 2022)



# **05** Experiments

### Traffic forecasting performance on *PEMS04*

| PEMS04     | MAE(↓) | RMSE(↓)     | MAPE(↓) |  |
|------------|--------|-------------|---------|--|
| HI         | 42.35  | 61.66       | 29.92   |  |
| GWNet      | 18.53  | 29.92       | 12.89   |  |
| DCRNN      | 19.63  | 31.26       | 13.59   |  |
| AGCRN      | 19.38  | 31.25       | 13.40   |  |
| STGCN      | 19.57  | 19.57 31.38 |         |  |
| GTS        | 20.96  | 32.95       | 14.66   |  |
| MTGNN      | 19.17  | 31.70       | 13.37   |  |
| STNorm     | 18.96  | 30.98       | 12.69   |  |
| GMAN       | 19.14  | 31.60       | 13.19   |  |
| PDformer   | 18.36  | 30.03       | 12.00   |  |
| STID       | 18.38  | 29.95       | 12.04   |  |
| STAEformer | 18.22  | 30.18       | 11.98   |  |
| SpoT-Mamba | 18.31  | 30.11       | 11.86   |  |





# 05 Experiments

### Visualization of SpoT-Mamba's predictions

- The blue line represents the ground truth, and the orange line denotes predicted traffic data.
  - Four nodes are randomly selected in *PEMS04*.











## **05** Experiments

### Ablation study of SpoT-Mamba

- Mamba blocks of SpoT-Mamba are replaced with transformer encoders.
  - Transformer encoders do not recognize input sequence order by themselves.
    - SpoT-Mamba does not apply learnable embeddings for walk sequences.
  - As a result, transformer encoders struggle to perceive the order in walk sequences.

| Walk Scan   | Temporal Scan | MAE(↓) | RMSE(↓) | <b>MAPE(</b> ↓) |
|-------------|---------------|--------|---------|-----------------|
| Transformer | Transformer   | 18.41  | 30.32   | 12.12           |
| Transformer | Mamba         | 18.69  | 30.17   | 12.28           |
| Mamba       | Transformer   | 18.29  | 30.06   | 11.93           |
| Mamba       | Mamba         | 18.31  | 30.11   | 11.86           |



# **06** Conclusion

 Propose a new Spatio-Temporal graph forecasting framework with a Mamba-based sequence modeling architecture, SpoT-Mamba.

- Effectively capturing the long-range spatio-temporal dependencies in STGs.
  - Extracting diverse local and global structures by utilizing BFS, DFS, and random walks.

• Promising results on the real-world traffic forecasting benchmark *PEMS04*.



# Thank You!





▲ GitHub

▲ BDILab

Our datasets and codes are available at: <a href="https://github.com/bdi-lab/SpoT-Mamba">https://github.com/bdi-lab/SpoT-Mamba</a>

You can find us at: {cjh0507, heehyeon, amh0360, jjwhang}@kaist.ac.kr https://bdi-lab.kaist.ac.kr

