
Non-Exhaustive, Overlapping Clustering
Joyce Jiyoung Whang ,Member, IEEE, Yangyang Hou, David F. Gleich ,

and Inderjit S. Dhillon, Fellow, IEEE

Abstract—Traditional clustering algorithms, such as K-Means, output a clustering that is disjoint and exhaustive, i.e., every single data

point is assigned to exactly one cluster. However, in many real-world datasets, clusters can overlap and there are often outliers that do

not belong to any cluster. While this is a well-recognized problem, most existing algorithms address either overlap or outlier detection

and do not tackle the problem in a unified way. In this paper, we propose an intuitive objective function, which we call the NEO-K-Means

(Non-Exhaustive, Overlapping K-Means) objective, that captures the issues of overlap and non-exhaustiveness in a unified manner.

Our objective function can be viewed as a reformulation of the traditional K-Means objective, with easy-to-understand parameters that

capture the degrees of overlap and non-exhaustiveness. By considering an extension to weighted kernel K-Means, we show that we

can also apply our NEO-K-Means idea to overlapping community detection, which is an important task in network analysis. To optimize

the NEO-K-Means objective, we develop not only fast iterative algorithms but also more sophisticated algorithms using low-rank

semidefinite programming techniques. Our experimental results show that the new objective and algorithms are effective in finding

ground-truth clusterings that have varied overlap and non-exhaustiveness; for the case of graphs, we show that our method

outperforms state-of-the-art overlapping community detection algorithms.

Index Terms—Overlapping clustering, K-Means, outlier, semidefinite programming, graph clustering, community detection

Ç

1 INTRODUCTION

CLUSTERING is one of the most fundamental and impor-
tant tasks in pattern analysis and recognition. Given a

set of data points, the goal of clustering is to group the data
points into a user-provided number of clusters such that
nearby data points are assigned to the same cluster. In the
traditional clustering setting, it is assumed that the clusters
are pairwise disjoint and all the data points are assigned to
some cluster. That is, every data point is assigned to exactly
one cluster. When separations between groups are clear and
the data do not contain any outliers, classical clustering
methods such as K-Means [1] often succeed in appropriately
grouping the data points in many realistic data models [2].

However, if the data points do not have an obvious sepa-
ration and contain both outliers and large regions of overlap
between groups, the traditional disjoint and exhaustive
clustering methods might fail to correctly capture the
underlying patterns of the data. For example, in biological
gene expression data, each cluster corresponds to a group
of genes which are likely to belong to the same functional

class. Since genes can serve multiple functions, the underly-
ing clusters are naturally overlapped with each other [3].
Another example is clustering a social network where the
clusters (also called communities) can overlap due to the
multiple personas that individuals adopt [4]. In this paper,
we revisit the clustering problem from the perspective of
real-world data where groups still exist but may lack clean
separations and the data contain outliers. In this setting,
a more reasonable goal is a non-exhaustive, overlapping
clustering where a data point may be outside of any cluster,
and clusters are allowed to overlap with each other.

There is substantial prior research that has examined both
of these problems individually—as would be expected for
an area as well studied as clustering. For example, non-
exhaustive clustering is highly related to outlier detection in a
dataset, which itself has an extensive literature [5]. Regarding
overlap, both soft clustering [6], which only makes pro-
babilistic assignments, and overlapping clustering models
have been studied [7]. Furthermore, many variations of the
K-Means algorithm have been proposed over the years [8]
including recent work that considers overlapping cluster-
ing [9], [10]. We discuss the related work in more detail in
Section 7 in the context of the limitations of existing methods
and our new contributions. A key difference between our
approach and existing ideas is that we treat the issues of non-
exhaustiveness and overlap in a unified framework.

The result of our investigations is a novel improvement
to the K-Means clustering objective, which we call NEO-
K-Means (Non-Exhaustive, Overlapping K-Means) objec-
tive, that allows us to simultaneously identify overlapping
clusters as well as outliers. The NEO-K-Means objective
provides an intuitive way to handle the degree of overlap
and non-exhaustiveness (the number of outliers not assig-
ned to any cluster) while seamlessly generalizing the

� J.J. Whang is with the Department of Computer Science and Engineering,
Sungkyunkwan University (SKKU), Suwon 440-746, South Korea.
E-mail: jjwhang@skku.edu.

� Y. Hou and D.F. Gleich are with the Department of Computer Science,
Purdue University, West Lafayette, IN 47907-2107.
E-mail: {hou13, dgleich}@purdue.edu.

� I.S. Dhillon is with the Department of Computer Science, The University
of Texas at Austin, Austin, TX 78712-1757.
E-mail: inderjit@cs.utexas.edu.

Manuscript received 2 Dec. 2016; revised 29 Apr. 2018; accepted 14 July 2018.
Date of publication 5 Aug. 2018; date of current version 10 Oct. 2019.
(Corresponding author: Joyce Jiyoung Whang.)
Recommended for acceptance by H. Xu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2018.2863278

2644 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

0162-8828� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4773-3194
https://orcid.org/0000-0002-4773-3194
https://orcid.org/0000-0002-4773-3194
https://orcid.org/0000-0002-4773-3194
https://orcid.org/0000-0002-4773-3194
https://orcid.org/0000-0002-8107-6474
https://orcid.org/0000-0002-8107-6474
https://orcid.org/0000-0002-8107-6474
https://orcid.org/0000-0002-8107-6474
https://orcid.org/0000-0002-8107-6474
mailto:
mailto:
mailto:

traditional K-Means objective. Furthermore, by considering
an extension to weighted kernel K-Means, we show that our
NEO-K-Means idea can also be applied to graph clustering
problems. We extend a traditional normalized cut-based
graph clustering objective to the non-exhaustive, overlap-
ping clustering setting, and show that this extended graph
clustering objective is mathematically equivalent to the
weighted kernel NEO-K-Means objective with a specific
weight and kernel. This equivalence enables us to apply our
NEO-K-Means idea to the overlapping community detec-
tion problem in network analysis.

To optimize the NEO-K-Means objective function, we
develop not only fast iterative algorithms but also more
sophisticated algorithms using a low-rank semidefinite
programming technique. We first present a simple iterative
algorithm, which we call the NEO-K-Means algorithm, that
monotonically decreases the NEO-K-Means objective func-
tion and generalizes Lloyd’smethod for K-Means. To provide
a good initialization with the iterative NEO-K-Means algo-
rithm, we study a convex semidefinite program (SDP) of the
NEO-K-Means objective. Also, we propose a low-rank factori-
zation of the SDP solution matrix and implement a solution
procedure using an augmented Lagrangian method, which
enables us to handle problems with tens of thousands of data
points, providing an order of magnitude increase in scalabil-
ity over the convex solver. Furthermore, we also propose
two fast multiplier methods to speed the computation of the
augmented Lagrangian method. Experimental results show
that our new objective and algorithms are effective in finding
ground-truth clusters in many real-world datasets; for the
case of graphs, we show that our algorithms outperform
state-of-the-art overlapping community detectionmethods.

This paper reflects a summary synthesis of our three con-
ference papers on this topic [11], [12], [13]. The goal is to
provide a holistic view of the ideas and to improve the
depth of experimental support for our methodology. The
rest of the paper is organized as follows. We introduce our
NEO-K-Means objective function in Section 2, and present a
connection between the NEO-K-Means objective and graph
clustering problems in Section 3. We propose the simple
iterative NEO-K-Means algorithm in Section 4, and present
the convex SDP relaxation of the NEO-K-Means problem in
Section 5. In Section 6, we present the low-rank SDP meth-
ods for NEO-K-Means. We summarize related work in
Section 7, and show experimental results in Section 8.
We present our conclusion in Section 9.

2 THE NEO-K-MEANS OBJECTIVE FUNCTION

Given a set of data points X ¼ fx1; x2; . . . ; xng, the classic K-
Means method seeks a partition of the data points into k
clusters C1; . . . ; Ck such that they cover all the data points
(formally, C1 [C2 [� � � [Ck ¼ X), and the partitions are
disjoint (Ci \ Cj ¼ ; 8i 6¼ j). The goal of K-Means is to pick
the clusters that minimize the distance from the cluster
centroid, or the mean of cluster, to each of its assigned data
points. The K-Means objective may be written as:

min
fCjgkj¼1

Xk
j¼1

X
xi2Cj

kxi �mjk2; where mj ¼
P

xi2Cj xi

jCjj
: (1)

It has been shown that minimizing the above objective
function is an NP-hard problem even for just two clusters.
However, there is an efficient heuristic K-Means algo-
rithm [1], also known as Lloyd’s algorithm, that proceeds
by repeatedly assigning data points to their closest clusters
and recomputing cluster centroids. This algorithm mono-
tonically decreases the objective function.

The goal of non-exhaustive, overlapping clustering is to
compute a set of cohesive clusters C1; C2; :::; Ck such that
C1 [C2 [::: [Ck � X and the clusters need not be disjoint.
To encode this new problem, we introduce an assignment
matrix UU ¼ ½uij�n�k where uij 2 B ¼ f0; 1g such that uij ¼ 1 if
xi belongs to cluster j; uij ¼ 0 otherwise. Using this notation,
if we seek a traditional disjoint and exhaustive clustering, the
number of ones in the assignment matrix UU should be always
equal to n because each data point is assigned to exactly one
cluster. On the other hand, in a non-exhaustive, overlapping
clustering, there are no restrictions on the assignment matrix
UU ; there can be multiple ones in a row, meaning that a data
point can belong to multiple clusters. Also, there can be rows
of all zeros, meaning that some data points can have nomem-
bership in any cluster. To control how many additional
assignments we will make in UU , we add a constraint that the
number of total assignments in UU should be equal to nþ an
where a controls the amount of overlap among the clusters.
Formally, we add traceðUUTUUÞ ¼ ð1þ aÞn. We require
0 � a � ðk� 1Þ and note that a 	 ðk� 1Þ to avoid assigning
each data point to every cluster.

When we only constrain the number of assignments, we
observe that some data points that are relatively far from
the cluster centers are not assigned to any cluster. We illus-
trate this behavior using a synthetic dataset shown in
Fig. 1a. When we optimize an objective which only con-
strains the number of total assignments in UU , we increase
overlap around the global mean as shown in Fig. 1b. To
account for this bias, we also directly constrain the number
of outliers which results in the NEO-K-Means objective that
we define in the next paragraph (2). Optimizing (2) leads to
correctly finding outliers as well as natural overlapping
clustering structure as shown in Fig. 1c.

To describe how we handle outliers, we need two pieces
of notation. Define an indicator function Ifexpg to be
Ifexpg ¼ 1 if exp is true; 0 otherwise, and let ee denote a
k� 1 column vector having all the elements equal to one.
Then, the vector UUee denotes the number of clusters to which
each data point belongs (note that UU is the assignment
matrix we defined above). Thus, ðUUeeÞi ¼ 0 means that xi
does not belong to any cluster. By setting the upper bound
of
Pn

i¼1 IfðUUeeÞi ¼ 0g to be bn, we can control the non-
exhaustiveness and at most bn data points can be consid-
ered as outliers. We require 0 � bn and note that bn 	 n
would cause most data points to be assigned to clusters.
Specifically, by the definition of “outliers,” bn should be a
very small number compared to n.

Putting all these together, we define our NEO-K-Means
objective function as follows:

min
UU2Bn�k

Xk
j¼1

Xn
i¼1

uijkxi �mjk2; where mj ¼
Pn

i¼1 uijxiPn
i¼1 uij

s.t. traceðUUTUUÞ ¼ ð1þ aÞn;
Xn
i¼1

IfðUUeeÞi ¼ 0g � bn:

(2)

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2645

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

Similar to K-Means, the above objective function is
designed to minimize the sum of squared distances between
every data point to its cluster centroid, but now the assign-
ment is not necessarily restricted to be disjoint and exhaus-
tive. The parameters a and b offer an intuitive way to capture
the degree of overlap and non-exhaustiveness; by “turning
the knob” on these parameters, the user can explore the land-
scape of overlapping, non-exhaustive clusterings. If a = 0 and
b = 0, the NEO-K-Means objective function is equivalent to
the standard K-means objective presented in (1). To see this,
note that setting the parameter b = 0 requires every data point
to belong to at least one cluster, while setting a = 0 makes n
assignments. Thus, the resulting clustering will be disjoint
and exhaustive and exactly equivalent to K-means.

We can extend (2) to a weighted kernel NEO-K-Means by
introducing a nonlinear mapping f and a nonnegative
weight wi for each data point xi as follows:

min
UU2Bn�k

Xk
j¼1

Xn
i¼1

uijwikfðxiÞ �mjk2; where mj ¼
Pn

i¼1 uijwifðxiÞPn
i¼1 uijwi

s.t. traceðUUTUUÞ ¼ ð1þ aÞn;
Xn
i¼1

IfðUUeeÞi ¼ 0g � bn:

(3)

In (3), the nonlinear mapping enables us to cluster the
data points in a higher dimensional feature space (UU is an
assignment matrix). We can avoid forming the feature space
explicitly by using the well-known kernel trick. LetKK denote
a kernel matrix such that KKij ¼ fðxiÞ � fðxjÞ. The weight for
each data point differentiates each data point’s contribution
to the objective function. Let WW ¼ ½wii�n�n denote a diagonal
weight matrix whose diagonal entries are equal to vertex
weights, and let uj denote the jth column of the assignment
matrixUU . Then, we can rewrite (3) as follows:

min
UU2Bn�k

Xk
j¼1

 Xn
i¼1

uijwiKKii �
uj

TWWKKWWuj

uj
TWWuj

!

s.t. traceðUUTUUÞ ¼ ð1þ aÞn;
Xn
i¼1

IfðUUeeÞi ¼ 0g � bn:

(4)

3 GRAPH CLUSTERING USING NEO-K-MEANS

It has been shown that a general weighted kernel K-Means
objective is equivalent to a traditional graph clustering
objective [14]. However, how to extend this idea to a non-

exhaustive, overlapping graph clustering has remained as an
open problem until we examined it in [11]. In this section,
we present how we can extend the traditional graph cluster-
ing objectives to a non-exhaustive, overlapping graph clus-
tering. This discussion provides a justification for the
resulting overlapping normalized cut measure that goes
beyond [11]. We show that the extended graph clustering
objective is mathematically equivalent to the weighted ker-
nel NEO-K-Means objective, which allows us to exploit the
NEO-K-Means idea for solving the overlapping community
detection problem.

3.1 Graph Clustering via Normalized Cut

Given a graph G ¼ ðV; EÞ, the corresponding adjacency
matrix is defined as AA ¼ ½aij� such that aij is equal to the
edge weight between vertex i and j if there is an edge,
and zero otherwise. We assume that we are working
with undirected graphs where the matrixAA is symmetric. We
also assume that there are no self-loops in the graph, i.e., the
diagonal elements of AA are all zeros. The traditional graph
clustering (also known as graph partitioning) problem seeks k
pairwise disjoint clusters such that C1 [C2 [� � � [Ck ¼ V.

Normalized cut [15] is one of the most popular graph
clustering objectives. Let linksðCp; CqÞ denote the sum of
edge weights between two sets Cp and Cq. Then, the normal-
ized cut of a graph is defined as follows:

NCutðGÞ ¼ min
C1;C2;���Ck

Xk
j¼1

linksðCj;VnCjÞ
linksðCj;VÞ

: (5)

Using a linear algebraic formulation, the normalized cut
objective may be expressed as follows:

NCutðGÞ ¼ min
y1;���yk

Xk
j¼1

yTj ðDD�AAÞyj
yTj DDyj

 max
y1;���yk

Xk
j¼1

yTj AAyj
yTj DDyj

; (6)

where DD is the diagonal matrix of vertex degrees, and yj
denotes an indicator vector for cluster j, i.e., yjðiÞ ¼ 1 if a
vertex i belongs to cluster j, zero otherwise; and there is no
overlap or outliers.

3.2 Extending Graph Cut Objectives to Non-
Exhaustive, Overlapping Graph Clustering

We show how we can extend the traditional graph cluster-
ing objective to a non-exhaustive, overlapping graph clus-
tering by exploring the implications of the normalized cut.

Fig. 1. (a) Two ground-truth clusters are generated. Green points indicate overlap between the clusters, and black points indicate outliers. (b) When
we only constrain the number of assignments, the solution contains too many false positive outliers. (c) The NEO-K-Means objective defined in (2)
adds an explicit term for non-exhaustiveness that enables it to correctly cluster the data.

2646 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

Let us take a closer look at the normalized cut. In (5),
the numerator linksðCj;VnCjÞ can be expressed as

P
u2CjP

v2VnCj linkðu; vÞ where linkðu; vÞ indicates the edge
weight between vertex u and v. Let CðuÞ denote a set of clus-
ters a vertex u belongs to. Then, in disjoint and exhaustive
clustering, jCðuÞj ¼ 1, and given an undirected edge fu; vg,
the total penalty for this edge in (5) is equal to 2linkðu; vÞ if
CðuÞ 6¼ CðvÞ since the edge is considered in CðuÞ and CðvÞ, or
the penalty is zero if CðuÞ ¼ CðvÞ.

The generalization of the normalized cut objective we
consider is:

NCutðGÞ ¼ min
C1;C2;���Ck

Xk
j¼1

linksðCj;VnCjÞ
linksðCj;VÞ

; (7)

where now the clusters C1; . . . ; Ck may be non-exhaustive
and overlap. In the traditional normalized cut definition,
the relationship between CðuÞ and CðvÞ can be either
CðuÞ 6¼ CðvÞ or CðuÞ ¼ CðvÞ. However, in a non-exhaustive,
overlapping graph clustering, there can be various relation-
ships between CðuÞ and CðvÞ because each vertex can belong
to multiple clusters and there can be different patterns
among the clusters the two vertices u and v belong to.

Table 1 shows the possible relationships between CðuÞ
and CðvÞ, and the total penalty of an edge fu; vg according
to the definition of the normalized cut (7). In general,
the total penalty of an edge fu; vg should be ðjCðvÞnCðuÞjþ
jCðuÞnCðvÞjÞlinkðu; vÞ (this corresponds to the last row of
Table 1). Indeed, the last column of each row in Table 1 can
be interpreted as a special case of this general form of the
penalty. Fig. 2 shows some examples of the first three cases
described in Table 1. In Fig. 2, the penalty of the edge
fu; v1g is zero since CðuÞ ¼ CðvÞ whereas the penalty of the
edge fu; v2g is 2linkðu; v2Þ since CðuÞ 6¼ Cðv2Þ. On the other
hand, the penalty of the edge fu; v3g is linkðu; v3Þ because
the edge fu; v3g is considered to be a within-cluster edge in
terms of C1 but a between-cluster edge in terms of C3. This is
because the vertex v3 is in the overlapped region between C1

and C3. We see that the penalty of the edge fu; v3g is less
than fu; v2g, and it aligns with our intuition in that the iden-
tity of v3 is ambiguous since it belongs to both of the clusters
C1 and C3 whereas v2 only belongs to C2. Since the vertex u
belongs to C1, it seems reasonable that we impose a less pen-
alty on the edge fu; v3g than fu; v2g. For brevity, we just
describe the three representative cases in detail, but one
can easily extend our analysis to other cases mentioned in
Table 1.

Now, we show how we can formally represent the nor-
malized cut objective for a non-exhaustive, overlapping
graph clustering. We first introduce an assignment matrix
YY ¼ ½yij�n�k such that yij = 1 if a vertex vi belongs to cluster
j; yij=0 otherwise. Let yj denote the jth column of YY . Then,
we can extend (5) to a non-exhaustive, overlapping graph
clustering by introducing the same constraints as in (2):

min
y1;���yk

Xk
j¼1

yTjðDD�AAÞyj
yTjDDyj

 max
y1;���yk

Xk
j¼1

yTjAAyj
yTjDDyj

s.t.traceðYY TYY Þ ¼ ð1þ aÞn;
Xn
i¼1

IfðYY eeÞi ¼ 0g � bn:

(8)

By adjusting a and b, we can control the degree of over-
lap and non-exhaustiveness. If a = 0, and b = 0, the above
objective enforces disjoint and exhaustive clustering, thus is
equivalent to the traditional normalized cut objective. Since
we normalize the cut of each cluster by its volume, the
upper bound of the normalized cut of a graph is k. We note
that in a non-exhaustive, overlapping graph clustering, the
normalized cut more gradually changes compared to the
disjoint and exhaustive graph clustering because it is possi-
ble that we partially penalize edges if their endpoints
belong to overlapped regions.

Even though we have focused on the normalized cut in
this paper, other graph clustering objectives (e.g., ratio asso-
ciation [15]) also can be extended to a non-exhaustive, over-
lapping graph clustering using a similar approach.

3.3 Connection to the NEO-K-Means Objective

We can show that the extended normalized cut defined in (8)
has a close connection to the weighted kernel NEO-K-Means
objective defined in (4). In fact, by defining appropriate kernel
and weight matrices in (4), we can show that (8) is equivalent
to (4). Let us define the kernel as KK
 gWW�1 þWW�1AAWW�1

where g is a positive constant typically chosen tomakeKK pos-
itive definite. Then (4) can be expressed as

TABLE 1
Possible Relationships between CðuÞ and CðvÞ in a Non-Exhaustive, Overlapping Graph Clustering,

and the Total Penalty of an Edge fu; vg According to the Definition of the Normalized Cut

Relationship Total Penalty of an Edge fu; vg
jCðuÞj ¼ 1 jCðvÞj ¼ 1 CðuÞ ¼ CðvÞ 0
jCðuÞj ¼ 1 jCðvÞj ¼ 1 CðuÞ 6¼ CðvÞ 2linkðu; vÞ
jCðuÞj ¼ 1 jCðvÞj > 1 CðuÞ � CðvÞ jCðvÞnCðuÞjlinkðu; vÞ
jCðuÞj ¼ 1 jCðvÞj > 1 CðuÞ 6� CðvÞ ðjCðuÞj þ jCðvÞjÞlinkðu; vÞ
jCðuÞj � 1 jCðvÞj ¼ 0 CðuÞ 6¼ ;, CðvÞ ¼ ; jCðuÞjlinkðu; vÞ
jCðuÞj > 1 jCðvÞj > 1 CðuÞ ¼ CðvÞ 0
jCðuÞj > 1 jCðvÞj > 1 CðuÞ 6¼ CðvÞ, CðuÞ � CðvÞ jCðvÞnCðuÞjlinkðu; vÞ
jCðuÞj > 1 jCðvÞj > 1 CðuÞ

T
CðvÞ ¼ ; ðjCðuÞj þ jCðvÞjÞlinkðu; vÞ

jCðuÞj > 1 jCðvÞj > 1 CðuÞ 6� CðvÞ, CðuÞ
T
CðvÞ 6¼ ; ðjCðvÞnCðuÞj þ jCðuÞnCðvÞjÞlinkðu; vÞ

Fig. 2. The penalty of the edge fu; v1g is zero, the penalty of the edge
fu; v2g is 2linkðu; v2Þ, and the penalty of the edge fu; v3g is linkðu; v3Þ.

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2647

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

min
UU

Xk
j¼1

 Xn
i¼1

uijwi
g

wi
� uj

TAAuj

uj
TWWuj

!

¼ min
UU

gð1þ aÞn�

Xk
j¼1

uj
TAAuj

uj
TWWuj

!

 max

UU

Xk
j¼1

uj
TAAuj

uj
TWWuj

s.t. traceðUUTUUÞ ¼ ð1þ aÞn;
Xn
i¼1

IfðUUeeÞi ¼ 0g � bn:

(9)

Now, in (9), let us use WW ¼ DD and notice that UU = YY
in (8). Putting these together, we can see that the
weighted kernel NEO-K-Means objective (4) is mathe-
matically equivalent to the extended normalized cut
objective (8). This implies that we can solve the non-
exhaustive, overlapping clustering problem for both vec-
tor datasets and graph datasets in a unified framework
using the NEO-K-Means idea.

4 THE NEO-K-MEANS ALGORITHM

We propose the NEO-K-Means algorithm which is a simple
iterative algorithm to optimize the NEO-K-Means objective
function. We also propose an efficient multilevel NEO-
K-Means algorithm for graph clustering.

4.1 The Iterative NEO-K-Means Algorithm

We propose a simple iterative algorithm which we call the
NEO-K-Means algorithm to optimize our NEO-K-Means
objective [11]. The NEO-K-Means algorithm monotonically
decreases the NEO-K-Means objective until it converges to
a local minimum. Having the hard constraints in (2), we
make nþ an assignments such that at most bn data points
can have no membership in any cluster. Note that the sec-
ond constraint can be interpreted as follows: among n data
points, at least n� bn data points should have membership
to some cluster. When our algorithm makes assignments of
points to clusters, it uses two phases to satisfy these two
constraints. Thus, each cluster Cj decomposes into two sets
�Cj and Ĉj that record the assignments made in each phase.

Algorithm 1 describes the NEO-K-Means algorithm. We
first initialize cluster centroids (We will discuss how we ini-
tialize the clusters in Sections 5 and 6). Given cluster centroids,
we compute all the distances ½dij�n�k between every data point
and clusters, and for every data point, record its closest cluster
and that distance. Then, the data points are sorted in ascend-
ing order by the distance to its closest cluster. To ensure at
least n� bn data points are assigned to some cluster (i.e., to
satisfy the second constraint), we assign the first n� bn data
points to their closest clusters. Let �Cj denote the assignments
made by this step. Thus,

Pk
j¼1 j�Cjj ¼ n� bn. Then, we make

bnþ an more assignments by taking bnþ an minimum
distances among ½dij�n�k such that xi =2 �Cj. Let Ĉj denote the
assignments made by this step. Thus,

Pk
j¼1 jĈjj ¼ bnþ an.

Finally,
Pk

j¼1ðj�Cjj þ jĈjjÞ ¼ nþ an. Once all the assignments
are made, we update cluster centroids by recomputing
the mean of each cluster. We repeat this procedure until the
change in the objective function is sufficiently small or the
maximumnumber of iterations is reached.

Note that the algorithm does not forcibly choose bn
points as outliers; indeed, the number of outliers is less
than or equal to bn, and depends on the the distances
between

Algorithm 1. The NEO-K-Means Algorithm

Input: X ¼ fx1; x2; � � � xng, the number of clusters k, the maxi-
mum number of iterations tmax, a, b
Output: C1; C2; � � � ; Ck
1: Initialize cluster means fmjgkj¼1, t ¼ 0.
2: while not converged and t < tmax do
3: Compute cluster means, and then compute distances

between every data point and clusters ½dij�n�k.

4: Initialize T ¼ ;, S ¼ ;, p ¼ 0, and �Cj ¼ ;, Ĉj ¼ ; 8j.
5: while p < ðnþ anÞ do
6: if p < ðn� bnÞ then
7: Assign xi
 to �Cj
 such that ði
; j
Þ ¼ argmin

i;j
dij where

fði; jÞg =2 T ; i =2 S.
8: S ¼ S [fi
g.
9: else
10: Assign xi
 to Ĉj
 such that ði
; j
Þ ¼ argmin

i;j
dij where

fði; jÞg =2 T .
11: end if
12: T ¼ T [fði
; j
Þg.
13: p ¼ pþ 1.
14: end while
15: 8j, update clusters Cj ¼ �Cj [Ĉj.
16: t ¼ tþ 1.
17: end while

data points and their “secondary” clusters. We note that, if
a ¼ 0 and b ¼ 0, then the NEO-K-Means algorithm is identi-
cal to the standard K-Means algorithm [1]. In this scenario,
all the n data points are assigned to their closest clusters.
We can show that the NEO-K-Means algorithm guarantees
monotonic decrease in the objective function as the follow-
ing result shows:

Theorem 1 ([11]). Algorithm 1 monotonically reduces the
NEO-K-Means objective in (2) while satisfying the constraints
specified by a and b.

Proof. Let J ðtÞ denote the objective at the t-th iteration.
Then,

J ðtÞ ¼
Xk
j¼1

X
xi2C

ðtÞ
j

kxi �m
ðtÞ
j k2

�
Xk
j¼1

X
xi2�Cj

ðtþ1Þ
kxi �m

ðtÞ
j k2 þ

Xk
j¼1

X
xi2Ĉj

ðtþ1Þ
kxi �m

ðtÞ
j k2

¼
Xk
j¼1

X
xi2C

ðtþ1Þ
j

kxi �m
ðtÞ
j k2 since Cðtþ1Þ

j ¼ �Cðtþ1Þ
j [Ĉðtþ1Þ

j

�
Xk
j¼1

X
xi2C

ðtþ1Þ
j

kxi �m
ðtþ1Þ
j k2 (property of centroids)

¼ J ðtþ1Þ

The first inequality follows from the update scheme
used to form �Cj and Ĉj by our algorithm, and the second
inequality follows from the property of the cluster cent-
roids. Clearly the algorithm always maintains feasibility,
i.e., the constraints specified by the parameters a and b

are always satisfied. tu

2648 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

4.2 The Multilevel NEO-K-Means Algorithm
for Graphs

In Section 3, we show that the normalized cut can be
extended to a non-exhaustive, overlapping graph cluster-
ing, and the extended normalized cut objective is equivalent to
the weighted kernel NEO-K-Means objective. This implies that
we can solve the non-exhaustive, overlapping graph cluster-
ing problem using the weighted kernel NEO-K-Means algo-
rithm. The difference between the standard NEO-K-Means
algorithm and the weighted kernel NEO-K-Means algo-
rithm is how to compute the distance between a data point
and a cluster. Using our definitions of kernel and weights
(presented in Section 3.3), the distance between a vertex vi
and a cluster Cj can be quantified as follows:

distðvi; CjÞ

¼ � 2linksðvi; CjÞ
degðviÞdegðCjÞ

þ linksðCj; CjÞ
degðCjÞ2

þ g

degðviÞ
� g

degðCjÞ
;

(10)

where degðviÞ denotes the degree of vertex vi, and degðCjÞ
denotes the sum of edge weights of vertices in Cj. Then,
Algorithm 1 can be applied to graph data by computing the
distances using (10).

When we solve the graph clustering problem, we can
exploit amultilevel framework similar to [14] to achieve a bet-
ter objective function value. In the multilevel framework, an
input graph is coarsened by merging adjacent vertices level
by level. As a result, a series of smaller graphs are created.
Once the input graph becomes small enough to be directly
partitioned, an initial partitioning is performed. The cluster-
ing result of the coarsest level graph is projected onto the
graph at the level above it. Many different heuristics can be
used at any of these coarsening or projection stages in order to
improve the overall performance. The clustering is then
refined through a refinement algorithm which plays the most
important role in optimizing an objective function. Once the
clustering is refined, the clustering result is projected onto the
graph at the level above it, and then refined. This procedure is
repeated until we reach the original graph.

While we use similar heuristics for the coarsening and
the initial partitioning phases as in [14], we implement the
weighted kernel NEO-K-Means algorithm for the refinement
phase. In this way, we optimize the weighted kernel NEO-
K-Means objective function atmultiple scales.We observe that
this multilevel NEO-K-Means algorithm is able to efficiently
optimize the extended normalized cut objective function.

5 AN SDP FOR NEO-K-MEANS

The iterative NEO-K-Means algorithm is fast, but suffers
from the classic problem that iterative algorithms for K-
Means fall into local minimizers given poor initialization of
the clusters. Thus, it is important to provide a good initiali-
zation with the NEO-K-Means algorithm. To find a good
initialization, we study a convex semidefinite program
(SDP) relaxation of the NEO-K-Means objective.

Semidefinite programs are one of the most general clas-
ses of tractable convex optimization problems. Once we for-
mulate a convex relaxation of the NEO-K-Means objective,
the convex problem can be globally optimized in time and
memory that is polynomial in the input size. The relaxed
solution can then be rounded to a discrete assignment

solution which can provide a good initialization for the iter-
ative NEO-K-Means algorithm.

5.1 Formulation

We begin by stating an exact SDP-like program for the
weighted kernel NEO-K-Means objective defined in (4) and
then describe how to relax it to an SDP. We use the same
notation as the previous section. The essential idea with the
SDP-like version is that we replace the assignment matrix UU
with a normalized cluster co-occurrence matrix ZZ:

ZZ ¼
Xk
j¼1

WWuujðWWuujÞT

uuTj WWuuj
: (11)

When ZZ is defined from an assignment matrix UU , then val-
ues of Zij are non-zero when items co-occur in a cluster.
With appropriate constraints on the matrix ZZ, it serves as a
direct replacement for the assignment matrix UU .

To state the problem, let KK denote the kernel matrix of
the data points, e.g., if XX is the data matrix whose rows cor-
respond to data vectors, then KK ¼ XXXXT is just the simple
linear kernel matrix. Let dd be a vector where di ¼ wiKii, i.e.,
a weighted diagonal from KK. We need two new types of
variables as well:

� Let ff denote a vector of length n such that the ith
entry indicates the number of clusters data point i
belongs to.

� Let gg denote a vector of length n such that the ith
entry is one if the data point i belongs to any clusters,
and zero if the data point does not belong to any
cluster.

The following program is equivalent to the weighted
kernel NEO-K-Means objective with a discrete assignment
matrix:

maximize
ZZ;ff;gg

traceðKKZZÞ � ffTdd

subject to traceðWW�1ZZÞ ¼ k; ðaÞ
Zij � 0; ðbÞ
ZZ � 0; ZZ ¼ ZZT ðcÞ
ZZee ¼ WW ff; ðdÞ
eeT ff ¼ ð1þ aÞn; ðeÞ
eeTgg � ð1� bÞn; ðfÞ
ff � gg; ðgÞ
rankðZZÞ ¼ k; ðhÞ
ff 2 Zn

�0; gg 2 f0; 1gn: ðiÞ:

(12)

Constraints ðaÞ; ðbÞ; ðcÞ; and ðhÞ encode the fact that ZZ
must arise from an assignment matrix. Constraints ðdÞ; ðeÞ;
ðfÞ; ðgÞ; and ðiÞ express the amount of overlap and non-
exhaustiveness in the solution. This is a mixed-integer, rank
constrained SDP. As such, it is combinatorially hard to opti-
mize just like the original NEO-K-Means objective.

The constraints that make this a combinatorial problem
are ðhÞ and ðiÞ. If we relax these constraints:

maximize
ZZ;ff;gg

traceðKKZZÞ � ffTdd

subject to ðaÞ; ðbÞ; ðcÞ; ðdÞ; ðeÞ; ðfÞ; ðgÞ
0 � ff � k; 0 � gg � 1

(13)

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2649

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

then we arrive at a convex problem. Thus, any local optimal
solution of (13) must be a global solution. Note that the con-
straint (a) acts equivalently to a nuclear norm constraint on
the rank since ZZ is a symmetric positive semi-definite
matrix and WW is a positive diagonal matrix. Solving (13)
requires a black-box SDP solver such as CVX [16]. As we con-
vert the NEO-K-Means objective into a standard form of
SDP, the number of variables becomes Oðn2Þ and the result-
ing complexity is worse than Oðn3Þ in most cases, and can
be as bad as Oðn6Þ. In Section 5.4, we examine the scalability
of several well-known SDP solvers.

5.2 Rounding Solutions

Once we get a real-valued co-occurrence matrix ZZ, we
need to convert it into a binary assignment matrix UU
through a rounding procedure. Since we know that the
idealized rank of ZZ is k, we can factorize ZZ by ZZ ¼ YY YY T

by applying a symmetric nonnegative matrix factoriza-
tion [17] where YY is an n� k non-negative matrix. After
the ZZ matrix is represented by a low-rank matrix YY , we
can convert it to a discrete solution by the procedure dis-
cussed in Section 6.3.

5.3 Rank of the Relaxed Solution Matrix

Since we formulate the co-occurrence matrix ZZ according
to (11), we know that the rank of the matrix ZZ should be
k. We conduct a simple experiment to investigate the
empirical rank of the co-occurrence matrix from solving
the SDP (13). We generate synthetic datasets using the
Gaussian distribution. We assume there are two clusters
with overlap. As we change the distance between the
cluster centroids and the variance level of each cluster,
we solve and compute the rank of the solution ZZ. In
Fig. 3, we present the rank of the solution matrix in gray
scale. Black indicates the rank of ZZ is 2, and lighter grey
colors show large ranks. We see that when the two clus-
ters are reasonably separable from each other (i.e., larger
distance between the cluster centroids or smaller variance
level), the rank of the solution matrix is close to two—the
number of clusters.

5.4 Scalability of SDP Solvers

We test the run time of several SDP solvers such as MOSEK,
SDPT3, SEDUMI, and SDPNAL+ [18] to understand the limits of
current SDP solution procedures. We can also solve (13) by
an alternating direction method of multipliers (the conver-
gent three-block ADMM procedure due to [19]), which is
denoted by ADMM+ (we only run 400 ADMM iterations,

which may not have converged, but gives a useful approxi-
mation). It is well known that SDP solvers are not highly scal-
able. Our goal is simply to understand the practical limits to
this approach. We measure the running time of each solver
on synthetic datasets with different numbers of data points.
Fig. 4a shows these results where SDPNAL+ and ADMM+ are
the fastest methods and could handle problems with thou-
sands of data points in less than a day. To deal with larger
datasets, we can consider a low-rank factorization of the
SDP solution matrix (as we briefly mentioned in the previ-
ous subsection) and implement a solution procedure using
an augmented Lagrangian method. We discuss this low-
rank SDP (LRSDP) method in Section 6. In Fig. 4b, we show
the run times of the fastest SDP solvers, SDPNAL+ and ADMM

+, and our LRSDP solver (denoted by ALM) for comparison.
We see that the LRSDP solver is much faster than the SDP
solvers.

6 A LOW-RANK SDP FOR NEO-K-MEANS

We propose optimizing a low-rank factorization of the
SDP solution matrix to tackle large-scale SDPs [20].
The resulting optimization problem is a quadratically
constrained problem with a quadratic objective that can
no longer be globally optimized. An augmented Lagrang-
ian procedure, for instance, will only converge to a local
minimizer. Nevertheless, when this approach has been
used in the past with high-quality optimization methods,
it frequently generates solutions that are as good as the
global optimal from convex solvers [20], a fact which has
some theory [21].

We discuss how to formulate the low-rank SDP (LRSDP)
for the NEO-K-Means objective, and also present several
algorithms to optimize this non-linear problem. Our LRSDP
algorithms can handle problems with tens of thousands of
data points, providing an order of magnitude increase in
scalability over the convex solver. On the problems where
we can compare with the convex formulations, we achieve
globally optimal objective values.

6.1 Formulation

In the SDP formulation of the NEO-K-Means objective (13),
the matrix ZZ should ideally be rank k, although this cannot
be enforced. If we represent ZZ as YY YY T where YY is an n� k
non-negative matrix, then we can enforce this consraint.
The following optimization problem is a low-rank SDP
for (13) (we have chosen to write it in the standard form of
a minimization problem with explicit slack variables ss and r

Fig. 3. The rank of the co-occurrence matrix ZZ.
Fig. 4. Run times of SDP solvers and the LRSDP solver on synthetic
datasets with different numbers of data points.

2650 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

to convert the inequality constraints into equality and
bound constraints).

minimize
YY ;ff;gg;ss;r

ffTdd� traceðYY TKKYY Þ

subject to k ¼ traceðYY TWW�1YY Þ ðsÞ
0 ¼ YY YY T ee�WW ff ðtÞ
0 ¼ eeT ff � ð1þ aÞn ðuÞ
0 ¼ ff � gg� ss ðvÞ
0 ¼ eeTgg� ð1� bÞn� r ðwÞ
Yij � 0; ss � 0; r � 0

0 � ff � kee; 0 � gg � 1:

(14)

We replace the constraint YY YY T � 0with the stronger con-
straint YY � 0. This problem is a quadratic programming
problem with quadratic constraints. Even though we lose
convexity by formulating the low rank SDP, this nonlinear
programming problem only requires OðnkÞ memory and
existing nonlinear programming techniques allow us to
scale to large problems.

6.2 Solvers for the NEO-K-Means LRSDP

We present three solution procedures for the NEO-K-Means
LRSDP problem: a classical augmented Lagrangian method,
a proximal augmented Lagrangian method, and an alternat-
ing direction method of multipliers.

6.2.1 Classical Augmented Lagrangian Method (ALM)

To solve (14), we use an augmented Lagrangian framework.
This is an iterative strategy where each step consists of
minimizing an augmented Lagrangian of the problem that
includes a current estimate of the Lagrange multipliers for
the constraints as well as a penalty term that drives the solu-
tion towards the feasible set. Augmented Lagrangian tech-
niques have been successful in previous studies of low-rank
SDP approximations [20].

Let � ¼ ½�1;�2;�3� be the Lagrange multipliers associated
with the three scalar constraints ðsÞ; ðuÞ; ðwÞ, and mm and gg be
the Lagrange multipliers associated with the vector con-
straints ðtÞ and ðvÞ, respectively. Let s � 0 be a penalty
parameter. The augmented Lagrangian for (14) is

LAðY; ff; gg; ss; r;�;mm; gg; sÞ ¼
ffTdd� traceðYY TKKYY Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

the objective

� �1ðtraceðYY TWW�1YY Þ � kÞ þ s

2
ðtraceðYY TWW�1YY Þ � kÞ2

� mmT ðYY YY T ee�WW ffÞ þ s

2
ðYY YY T ee�WW ffÞT ðYY YY T ee�WW ffÞ

� �2ðeeT ff � ð1þ aÞnÞ þ s

2
ðeeT ff � ð1þ aÞnÞ2

� ggT ðff � gg� ssÞ þ s

2
ðff � gg� ssÞT ðff � gg� ssÞ

� �3ðeeTgg� ð1� bÞn� rÞ þ s

2
ðeeTgg� ð1� bÞn� rÞ2:

(15)

At each step in the augmented Lagrangian solution
framework, we solve the following subproblem

minimize LAðYY ; ff; gg; ss; r;�;mm; gg; sÞ
subject to Yij � 0; ss � 0; r � 0;

0 � ff � kee; 0 � gg � 1:

(16)

We use limited-memory BFGS with bound con-
straints [22] to minimize the subproblem with respect to the
variables YY , ff, gg, ss and r. This requires the gradient of LA

with respect to the variables, see [12] for the derivation.

6.2.2 Proximal Augmented Lagrangian Method (PALM)

The proximal augmented Lagrangian method differs from
the classical augmented Lagrangian method only in an
additional proximal regularization term for primal updates.
This can be considered as a type of simultaneous primal-
dual proximal-point step that helps to regularize the sub-
problems solved at each step. This leads to the iteration

xxtþ1 ¼ argmin
xx

LAðxx;��t;mmt; ggt; sÞ þ 1

2t
kxx� xxtk2;

where xx represents ½yy; ff; gg; ss; r� with yy ¼ YY ð:Þ vectorized by
column. Then we update the multipliers ��;mm; gg as in the
classical augmented Lagrangian. We may also need to
update the penalty parameter s and the proximal parameter
t respectively.

We use a limited-memory BFGS with bound con-
straints to solve the new subproblem with respect to the
variable xx. If we let t ¼ s, this special case is called the
proximal method of multipliers, first introduced in [23].
The proximal method of multipliers has better theoretical
convergence guarantees for convex optimization prob-
lems compared with the classical augmented Lagrang-
ian [23]. In the non-convex setting like our NEO-K-Means
problem, we believe it is likely to help to improve condi-
tioning of the Hessian in the subproblems and thus
reduce the solution time for each subproblem. And this is
indeed what we find.

Since we use the proximal augmented Lagrangian on
the problem without any convexity, local convergence is
the best we can achieve. By specializing a general conver-
gence result about the proximal augmented Lagrangian
in [24] to our problem (14), we can show the local conver-
gence of our algorithm. The resulting theorem is a general
convergence result about the proximal augmented
Lagrangian method for non-convex problem with bound
constrained subproblems. Further details are available
in [13].

6.2.3 Alternating Direction Method of

Multipliers (ADMM)

There are four sets of variables in problem (14) (YY , ff, gg and
slack variables). We can use this structure to break the aug-
mented Lagrangian function into smaller subproblems for
each set of variables. Some of these subproblems are then
easier to solve. For example, updating variable ff alone is
a simple convex problem, thus it is very efficient to have
a globally optimal solution. The alternating direction
method of multipliers approach of updating block variables
YY , ff, gg, ss and r respectively, utilizes this property, which
leads to the following iterates:

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2651

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

YY tþ1 ¼ argmin
YY

LAðYY ; fft; ggt; sst; rt;��t;mmt; ggt; sÞ

fftþ1 ¼ argmin
ff

LAðYY tþ1; ff; ggt; sst; rt;��t;mmt; ggt; sÞ

ggtþ1 ¼ argmin
gg

LAðYY tþ1; fftþ1; gg; sst; rt;��t;mmt; ggt; sÞ

sstþ1 ¼ argmin
ss

LAðYY tþ1; fftþ1; ggtþ1; ss; rt;��t;mmt; ggt; sÞ

rtþ1 ¼ argmin
r

LAðYY tþ1; fftþ1; ggtþ1; sstþ1; r;��t;mmt; ggt; sÞ

then the multipliers ��, mm, gg and the penalty parameter s are
updated accordingly.

We expect that this strategy will aid convergence because
it decouples the update of YY from the update of ff. In the
problem with all variables, the interaction of these terms
has the strongest non-convex interaction. We now detail
how we solve each of the subproblems.

Update YY . We use a limited-memory BFGS with bound
constraints to solve the subproblem with respect to the vari-
ables YY since it is non-convex.

Update ff and gg. The update for ff and gg respectively both
have the following general form:

minimize
xx

fðxxÞ ¼ xxTaaþ s

2
xxTDDxxþ s

2
ðeeTxxÞ2

subject to 0 � xx � bee;
(17)

whereDD is a positive diagonal matrix, aa is a constant vector,
and b is a constant. To solve this, we use ideas similar to [25,
S6.2.5]. Let t ¼ eeTxx, thus 0 � t � bn. We solve this problem
by finding roots of the following function F ðtÞ:

F ðtÞ ¼ t � eeTP ½� 1

s
DD�1ðaaþ steeÞ; 0; b�;

where the function P ½xx; 0; b� projects the point xx onto the
rectangular box ½0; b�. To find these roots, bisection suffices
because F ð0Þ � 0 and F ðbnÞ � 0. This is a globally optimal
solution. A detailed analysis can be found in [13].

Update ss and r. These updates just require solving one
variable quadratic optimization with simple bound con-
straints; the result is a simple update procedure.

6.3 Rounding Procedure

The LRSDP solvers presented in Section 6.2 produce real-
valued solutions. Thus, we need to convert YY into a binary
assignment matrix UU through a rounding procedure.
Indeed, YY can be regarded as the normalized assignment
matrix as follows:

YY ¼ WWÛU; (18)

where ÛU = ½ûu1; ûu2; . . .; ûuk�, and ûuc ¼ uuc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uuTc WWuuc

p
for any

c ¼ 1; . . .; k. Thus, one way to get UU from YY is to select the
top ð1þ aÞn entries in WW�1YY as the clustering assignment.
We find this strategy useful when we solve the weighted
kernel NEO-K-Means problem.

We also notice that both the vectors ff and gg provide
important information about the solution. Namely, ff gives
us a good approximation to the number of clusters each
data point is assigned to, and gg indicates which data points
are not assigned to any cluster. By utilizing this informa-
tion, we propose Algorithm 2 to derive UU from YY . It uses the

Algorithm 2. Rounding YY to a Binary Matrix UU

Input: YY ,WW , ff, gg, a, b
Output: UU
1: Update YY ¼ WW�1YY .
2: Set D to be the largest (n� bn) coordinates of gg.
3: for each entry i in D do
4: Set S to be the top fib c entries in Y ði; :Þ.
5: Set Uði;SÞ ¼ 1.
6: end for
7: Set �ff ¼ ff � ffb c.
8: SetR to be the largest entries in �ff.
9: for each entry i inR do
10: Pick a cluster ‘where Y ði; ‘Þ is the maximun over all

clusters where i is not currently assigned.
11: Set Uði; ‘Þ ¼ 1.
12: end for

largest n� bn entries of the vector gg to determine the set of
data points to assign first. Each data point i is assigned to
bfic clusters based on the values in the ith row of YY . The
remaining assignments are all based on the largest residual
elements in ff � bffc.

6.4 Comparison of the SDP and the Low-Rank SDP

Wepresent the SDP and the low-rank SDP (LRSDP) formula-
tions of our NEO-K-Means objective function, and also dis-
cuss the solution procedures in the previous sections. Now
we compare the performance of the SDP solvers and our pro-
posed LRSDP solvers on real-world datasets. We consider
two graph clustering problems using ‘dolphins’ [26] and ‘les
miserables’ [27] datasets. The ‘dolphins’ network represents
frequent associations between 62 dolphins (there are 159
undirected edges in the network), and ‘les miserables’ net-
work represents the co-appearance of characters in the novel
Les Miserables (there are 77 nodes and 254 edges). The
‘music‘ dataset contains 593 music songs, each of which is
represented by a 72 dimensional feature vector (details are
available in Section 8.1.1).

Table 2 shows the objective function values and the
run times (MOSEK fails on the ‘music’ dataset due to the size).
We report the objective values before the relaxed solution
is rounded to a discrete assignment solution to precisely mea-
sure how much our LRSDP solutions are different from the
solution returned by the SDP solvers. For the ADMM+ method,
we limit the maximum iteration to 400 so that it serves as a
fast heuristic. Thus, ADMM+ had not yet converged on the
larger dataset ‘music’ yielding a larger objective value in
Table 2. We can see that the objective values returned from

TABLE 2
The Objective Values and the Run Time (in Seconds) of SDP
(Italics) and Our LRSDP (Bold) Solvers on Real-World Data

Method Dolphins Les Miserables music

Obj. Time Obj. Time Obj. Time

mosek 70.4311 47.36 88.4600 89.76 — —
sdpnal+ 70.0313 13.49 88.0635 23.06 64823.5 437.44
admm+ 70.0339 2.23 88.0593 2.47 65885.1 38.32
alm 70.0317 2.40 88.0649 5.02 64824.4 107.68
palm 70.0342 1.97 88.0801 2.87 64823.3 43.53
admm 70.0323 1.65 88.1052 1.43 64823.9 29.14

2652 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

the SDP solver SDPNAL+ and returned from the proposed
LRSDP solvers are essentially identical (they differ up to the
solution tolerance given by the methods). In these cases, then,
we are successful in finding a globally optimal solution (i.e.,
(13) and (14) are the same in these cases). Also, whenwe com-
pare the run times, we find that the LRSDP solvers are faster
than the SDP solvers. Note that the two fast multiplier meth-
ods, PALM and ADMM, are faster than the classical aug-
mented Lagrangianmethod (ALM).

7 RELATED WORK

Both the aspects of overlap and non-exhaustiveness in clus-
tering have been studied before, albeit rarely considered
together in a unified manner as we do. We recognize
that [28] also considers both overlap and non-exhaustive-
ness by modifying the traditional K-medoids algorithm,
but their methodologies include complicated heuristics.

A few recent papers study the clustering problem with
outlier detection. In particular, [29] have proposed the k-

means– algorithm, which discovers clusters and outliers in a
unified fashion; however it does not find overlapping clus-
ters. We focus our discussion on overlapping clustering as
that literature is the most closely related to our contribution.
Soft clustering methods, such as fuzzy K-Means [6], relax the
binary assignment constraint and replace it by a probabilistic
assignment. Thresholding these probabilities may result in
both overlapping assignments to clusters and non-exhaus-
tive partitions, although it is difficult to control these effects.

There have been many attempts to extend K-Means to
overlapping clustering. For example, [9] defines okm by
introducing a concept of the mean of cluster centers each
data point belongs to. Also, [10] has reformulated the okm
objective function by adding a sparsity constraint, which
results in proposing explicit/implicit sparsity constrained
clustering. On the other hand, from the Bayesian perspec-
tive, [7] proposed a generative model, called moc, where
each data point is assumed to be generated from an expo-
nential family. We compare the performance of these meth-
ods with our NEO-K-Means method in Section 8.1.

In the context of graph clustering, many different types
of overlapping graph clustering, or overlapping community
detection methods, have been presented. We previously
developed a method called nise using a seed expansion
idea [30]. In this algorithm, good seeds are detected in a net-
work, and the seeds are expanded using a personalized Pag-
eRank scheme. Compared to this seed-and-grow algorithm,
our NEO-K-Means algorithm adopts a more principled
approach. Among the existing methods, the scalable alter-
natives include demon [31] and bigclam methods [32]; which
we compare against. We also compare with oslom [33] which
detects outliers and produces statistically significant over-
lapping communities. Many other methods are discussed in
a recent survey [34], although the majority of successful
approaches tend to suffer scalability issues on large net-
works like those we consider. Our derivation of the relation-
ship between NEO-K-Means and overlapping community
detection is inspired by [14] which showed the connection
between K-Means and graph partitioning.

Our SDP formulations are related to convex relaxations
of the traditional K-Means objective [35], [36], [37]. For

instance, [35] employs the same general strategy of using a
low-rank factorization of the SDP for K-Means in concert
with an augmented Lagrangian solver for the resulting
nonlinear optimization problem. Even more generally, our
work fits into the broad setting of convex relaxations of clus-
tering problems including normalized cut objectives [38].

Using augmented Lagrangian methods to solve low-rank
factorizations of SDP solutions has a long history of deliver-
ing successful performance when the data arise from
graphs. For instance, [20] originally proposed this idea for
the MAX-CUT and minimum bisection SDPs. Later, similar
ideas were used to address key weaknesses in spectral clus-
tering [39] on power-law graphs.

8 EXPERIMENTAL RESULTS

We show experimental results of our NEO-K-Means method
on various real-world datasets, and compare the performance
with state-of-the-art overlapping clustering and overlapping
community detectionmethods.

8.1 Data Clustering

We first evaluate the performance of the NEO-K-Means
algorithm on a data clustering task.

8.1.1 Datasets

We use six different real-world datasets from [40] and [41]
to measure the performance of different clustering algo-
rithms. Table 3 presents some basic statistics of these data-
sets. On these datasets, we have the ground-truth clusters
and ‘avg. csize’ denotes the average size of the ground-truth
clusters.

The first three columns of Table 3 correspond to datasets
from computer vision applications [40]. In these datasets, we
have a set of images where each image is represented by a
high-dimensional feature vector and annotated by various
attributes such as parts (e.g., “arm”, “wing”, etc.) and materi-
als (e.g., “glass”, “plastic”, etc.). We treat each attribute as a
cluster, which results in forming overlapping clusters of the
images since an image can havemultiple attributes.We create
three different datasets by selecting different attributes such
that the ground-truth clusters contain overlap. In particular,
for the vision1 dataset, we select images that are labelled by
“wood” or “glass” or both. For the vision2 dataset, we select
images that are annotated by at least one of the following
attributes: “Nose”, “Hair”, “Arm”, “Foot/Shoe”, “Metal”,
and “Furry”. Similarly, for the vision3 dataset, we consider
“Mouth”, “Face”, “Nose” “Hair”, “Wood”, “Glass”, and
“Horn”.

For example, the vision1 dataset contains 390 images with
two ground-truth clusters, each of which corresponds to
“wood” and “glass”. Among the 390 images, 111 images

TABLE 3
Real-World Vector Datasets

vision1 vision2 vision3 scene yeast music

n 390 1,792 915 2,407 2,417 593
dimension 9,751 9,751 9,751 294 103 72
avg. csize 250.5 566.3 275.9 430.8 731.5 184.7
k 2 6 7 6 14 6

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2653

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

belong to both of the clusters. We run the iterative NEO-
K-Means algorithm with k ¼ 2 on this dataset, and select
some representative images from the resulting clusters in
Fig. 5. Since clustering is unsupervised, we do not get a label
for each cluster, but by looking at the clustering result, we
realize that the images which are assigned to both of the clus-
ters are usually annotated by both “wood” and “glass” as
shown in Figs. 5a whereas most of the images which are only
assigned to one of the clusters are annotated by either “wood”
or “glass” but not both as shown in Fig. 5b and 5c. We further
validate this approach in more scenarios in our more system-
atic studies below.

We also use some benchmark datasets of multi-label
learning from [41]. The ‘scene’ dataset [42] is a set of scene
image feature vectors where each image is labelled by their
scenes, e.g., beach, sunset, mountain, etc. Each scene label
can be considered as a ground-truth cluster, and the clusters
can overlap because an image can contain more than one
scene. The ‘yeast’ dataset [3] is from a biology domain. This
dataset contains a set of feature vectors for genes where
each feature vector is constructed based on micro-array
expression data and phylogenetic profiles of genes, and
each gene is labelled by its functional classes. Since a gene
can belong to multiple functional classes, each gene can
have multiple labels. The ‘music’ dataset [43] consists of a
set of feature vectors extracted from 593 different music
songs. In this dataset, each song is labelled by emotions pre-
sented in the song, e.g., happy, surprised, relaxing, etc.
Since several different emotions can be expressed in a song,
a song can have more than one label. On these datasets, we
treat each label as a ground-truth cluster, which enables us
to interpret these multi-labelled datasets as datasets having
overlapping ground-truth clusters.

8.1.2 Parameter Selection

The NEO-K-Means method includes two important param-
eters a and b. Now, we discuss some guidelines for how to
select reasonable a and b values in practice.

Indeed, parameter selection is considered to be a chal-
lenging task, so many existing clustering algorithms leave
this as an open problem. For example, in k-means–

algorithm [29], the number of outliers is a required input.
Most other clustering methods (e.g., [6], [10]) also have their
own model parameters that should be set by a user. While
some model parameters of other clustering methods tend to
be non-intuitive to set or it can be hard to predict the effect
of a particular parameter setting, the NEO-K-Means param-
eters a and b are intuitive parameters that allow users to
specify how much overlap/non-exhaustiveness they want.

So, users may be able to estimate these parameters from the
domain knowledge. If they are unknown, we can estimate a
and b values by using the heuristics discussed below.

Choosing b. To estimate the non-exhaustiveness parame-
ter b, we first run the traditional K-Means algorithm [1]. Let
di denote the distance between data point i and its closest
cluster. We compute the mean (denoted by m) and the stan-
dard deviation (denoted by s) of di (i = 1,� � � ; n). If a distance
di is greater than mþ 3s, then we consider the data point i
as an outlier. That is, we consider a data point to be an out-
lier if the distance to its closest cluster is greater than three
standard deviations from the mean by following the three
sigma rule in statistics [44]. In this way, we can estimate the
number of outliers, and thus get the b value.

Choosing a. Different datasets might contain different lev-
els of overlap between the clusters. Note that 0� a	 (k-1 as
we described in Section 2. Since a controls the amount of
overlap, the choice of a should depend on whether a user
expects a small overlap, amediumoverlap, or a large overlap
between the clusters. For a small number of clusters (e.g., k�
10), we suggest to use a = 0.1, a = 1, and a =

ffiffiffi
k

p
-1. For a large

number of clusters (e.g., k � 100), we suggest to try a = 1/
(
ffiffiffi
k

p
-1), a = 1/(log k-1), a = 1, a = log k-1, and a =

ffiffiffi
k

p
-1.

8.1.3 Improvement from Advanced Optimization

In Section 4, we present the simple iterative NEO-K-Means
algorithm, and in Section 6, we propose using a low-rank SDP
(LRSDP) technique to provide a good initialization with the
iterative NEO-K-Means algorithm. We show that the low-
rank SDP problem for NEO-K-Means can be solved by the
classical augmented Lagrangian method (ALM in short), or
via even faster methods, PALM and ADMM, in Section 6.2.
Table 4 shows the NEO-K-Means objective function values
and run times of the iterative NEO-K-Means algorithm with
four different initializations (the traditional K-Means, ALM,
PALM, and ADMM) on the ‘yeast’ dataset. We run each
method 5 times and report the best, the worst, the mean and
the standard deviation. We see that by applying the LRSDP
methods, we can significantly lower the objective function
values, i.e., we can produce qualitatively better clustering
results by using the LRSDP initialization. When we compare
the run times, we see that both PALM and ADMM methods
are faster than ALM. Thus, we empirically observe that the
two fast multiplier methods are useful to reduce the run
time of solving the LRSDP NEO-K-Means problem with
no change in quality. Note that we do not expect any of the

Fig. 5. Representative images from the clusters produced by the NEO-
K-Means method. The images on the overlapped region are annotated
by both “wood” and “glass” whereas the images which are not on the
overlapped region are annotated by either “wood” or “glass”.

TABLE 4
The NEO-K-Means Objective Function Values and Run Times
of the Iterative NEO-K-Means Algorithm with Four Different

Initializations on the ‘yeast’ Dataset

best worst mean std.

Objective value kmeans+neo 9494 9610 9549 51
lrsdp-alm+neo 9280 9414 9370 58
lrsdp-palm+neo 9280 9414 9363 50
lrsdp-admm+neo 9280 9398 9354 48

Run time (sec.) kmeans+neo 31 60 40 11
lrsdp-alm+neo 4083 4462 4301 144
lrsdp-palm+neo 1549 1802 1633 100
lrsdp-admm+neo 914 1202 1029 107

2654 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

optimization-based methods will be faster than the simple
iterative K-Means method since it is a completely different
type of algorithm. Even though we only report the results on
the ‘yeast’ dataset for brevity, we were able to observe similar
results on other datasets.

8.1.4 Clustering Performance via Ground-Truth

We compare the NEO-K-Means method with other overlap-
ping clustering methods—moc [7], okm [9], and explicit/
implicit sparsity constrained clustering [10] (denoted by esp
and isp, respectively). For moc, esp, and isp, we used the soft-
ware and default parameters provided by the authors of [7]
and [10]. For the NEO-K-Means method, we estimate the b

value by the strategy described in Section 8.1.2, and set three
different a values, each of which corresponds to a small, a
medium, and a large overlap (we set a = 0.1, a = 1, and a =ffiffiffi
k

p
-1). These are denoted by NEOs, NEOm, and NEOl,

respectively. On the vision1 dataset, we just use a = 0.1 and
a =

ffiffiffi
k

p
-1 because k = 2.

To evaluate the resulting set of clusters from each
method, we compute the average F1 score [32], the pairwise
F1 score [7], and the average NMI scores [45]. Each of these
metrics is considered to be a standard metric to measure
how well a clustering algorithm finds the ground-truth clus-
ters. For the average F1 score and the pairwise F1 score, we
use the exactly same definitions used in [32] and [7], respec-
tively. The average NMI score is computed by averaging
the NMI scores of the best match between the ground-truth
clusters and the algorithmic clusters. Given a set of algorith-
mic clusters C, and the ground-truth clusters S, the NMI
score of a single ground-truth cluster Si is defined as
NMIðSiÞ ¼ NMIðSi; Cj
 Þ such that j
 ¼ argmaxj NMIðSi; CjÞ
where Cj 2 C. Similarly, we can also define the NMI score of
a single algorithmic cluster NMIðCiÞ by picking the ground-
truth cluster Sj 2 S with the highest NMI score. Then, the
average NMI is computed as follows:

Avg. NMI ¼ 1

2

�
1

jSj
X
Si2S

NMIðSiÞ þ
1

jCj
X
Ci2C

NMIðCiÞ
�
:

This is similar to how the average F1 is computed in [32].
We run each of the algorithms 5 times and Table 5

shows the results (we present the best, the worst, and the
average scores for each method). If an algorithm happens
to return empty clusters or clusters that contain all the
data points, we exclude these clusters when we compute
the metric scores. On the ‘yeast’ dataset, moc returns 13
empty clusters, and one cluster that contains all the data
points. So we cannot report the score of moc on this data-
set. In Table 5, we can see that the NEO-K-Means method
shows the highest scores in most of the cases. Indeed,
among 54 cases (6 datasets, 3 metrics, and 3 scores), the
NEO-K-Means achieves the highest score on 48 cases. We
note that the NMI metric gives a slightly different ranking
of the algorithms from the F1 metrics. For example, on the
vision2 dataset, isp is worse than okm in terms of the pair-
wise F1 score, but better than okm in terms of the NMI
score. On the other hand, the NEO-K-Means method con-
sistently outperforms other methods in terms of all the
three metrics. We conclude that the NEO-K-Means objec-
tive and the algorithm are beneficial to detect the under-
lying patterns of real-world data, and thus useful to
identify ground-truth overlapping clusters.

Finally, we conduct a sensitivity analysis for the parame-
ter a of the NEO-K-Means algorithm (note that the b value
can be automatically estimated by the strategy described in
Section 8.1.2). Fig. 6 shows how the clustering performance
of the iterative NEO-K-Means algorithm changes as we
change the a values. We try 100 different a values ranging
from 0.01 to (k-1). For each a, we run the algorithm five
times and pick the result which is associated with the small-
est NEO-K-Means objective function. For this experiment,
we initialize the NEO-K-Means algorithm with the fast tra-
ditional K-Means method instead of the LRSDP method
because we need to run the algorithm for 500 times on each
dataset. Therefore, in Fig. 6, we expect that each of the lines
can be slightly boosted up if we use the LRSDP initializa-
tion. When we evaluate the clustering, we filter out an

TABLE 5
The Average F1, Pairwise F1, and NMI Scores

Average F1 (%) Pairwise F1 (%) Average NMI (%)

best worst avg. best worst avg. best worst avg.

vision1 moc 39.9 39.9 39.9 84.5 84.5 84.5 8.8 8.8 8.8

esp 50.1 48.9 49.4 83.5 82.6 83.2 11.8 11.1 11.4

isp 47.2 47.2 47.2 79.4 79.4 79.4 12.1 12.1 12.1

okm 50.2 50.2 50.2 83.7 83.7 83.7 11.5 11.5 11.5

NEOs 42.2 42.2 42.2 89.9 89.9 89.9 9.3 9.3 9.3

NEOl 67.9 67.9 67.9 83.5 83.5 83.5 6.6 6.6 6.6

vision2 moc 34.6 31.4 32.9 64.7 41.9 57.3 6.7 4.4 5.4

esp 47.8 45.4 46.9 60.1 58.0 58.6 7.3 5.8 6.4

isp 40.7 38.4 39.4 39.7 37.7 38.6 10.6 7.3 9.3

okm 49.9 46.4 48.8 63.5 61.2 62.4 7.8 6.5 7.1

NEOs 42.4 40.6 41.4 44.8 41.6 43.2 10.9 8.3 9.3

NEOm 55.8 54.2 54.7 64.2 62.6 63.1 11.3 10.0 10.3

NEOl 56.3 56.2 56.2 65.0 64.8 64.9 11.1 11.0 11.1

vision3 moc 32.4 30.0 31.2 53.0 43.5 49.1 6.3 4.6 5.7

esp 43.9 42.3 43.4 47.0 45.9 46.6 4.9 4.3 4.7

isp 37.1 34.4 35.5 30.8 28.1 29.5 7.2 5.7 6.2

okm 43.9 42.0 42.8 47.6 45.8 46.5 6.2 5.6 6.0

NEOs 38.4 36.0 37.3 34.2 32.6 33.3 7.7 6.1 6.9

NEOm 49.7 49.6 49.6 52.8 52.7 52.7 11.4 11.3 11.3

NEOl 51.4 51.3 51.4 54.0 54.0 54.0 10.3 10.1 10.2

scene moc 44.1 41.0 42.3 37.4 36.8 37.0 20.5 19.3 19.9

esp 55.5 52.7 54.4 41.3 40.3 40.7 20.3 17.6 19.3

isp 61.7 58.8 59.9 45.7 42.5 44.2 28.2 25.3 26.6

okm 57.5 55.2 56.2 43.1 42.1 42.5 23.3 20.5 21.8

NEOs 62.5 58.4 60.5 46.0 44.6 45.5 29.1 24.9 27.1

NEOm 51.5 51.3 51.4 44.7 44.5 44.6 16.4 16.2 16.3

NEOl 48.5 47.7 48.1 43.0 42.5 42.8 14.8 13.8 14.3

yeast moc N/A N/A N/A N/A N/A N/A N/A N/A N/A

esp 34.4 32.8 33.6 63.7 58.7 61.4 1.6 1.4 1.5

isp 19.9 18.6 19.0 14.2 13.8 14.0 4.0 3.6 3.7

okm 34.8 34.1 34.4 63.9 62.5 63.4 2.5 1.8 2.0

NEOs 21.7 20.7 21.3 16.4 15.8 16.1 4.7 4.7 4.7

NEOm 35.7 35.6 35.6 39.0 38.9 38.9 7.3 7.3 7.3

NEOl 42.2 40.7 41.9 65.9 61.0 64.9 2.6 2.6 2.6

music moc 50.6 47.1 49.4 60.6 58.6 59.4 10.8 8.6 9.9

esp 51.2 49.1 50.2 59.3 57.7 58.5 10.5 8.7 9.5

isp 50.1 47.2 48.4 52.9 45.6 49.6 12.7 10.6 11.3

okm 51.6 49.7 50.5 57.7 54.8 56.4 11.9 10.8 11.3

NEOs 46.8 43.8 45.0 42.5 38.0 40.1 13.4 10.2 11.9

NEOm 51.4 51.3 51.3 54.3 54.2 54.2 11.0 10.8 10.9

NEOl 52.6 52.5 52.6 58.9 58.7 58.7 9.0 8.8 8.9

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2655

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

empty cluster as well as a cluster that contains all the data
points. A different color indicates a different dataset, and
the dotted line indicates the performance of the best base-
line method on that dataset. By comparing the performance
of the NEO-K-Means with different a values and that of the
best baseline method in terms of the three metrics on the six
datasets, we can see a reasonable range of a values that
allows the NEO-K-Means method to outperform the best
baseline method.

8.2 Graph Clustering

Now, we show experimental results of our weighted kernel
NEO-K-Means algorithm on graph data.

8.2.1 Case Study with the Karate Club Network

As an illustration of our method, we first apply our multi-
level NEO-K-Means algorithm (discussed in Section 4.2) on
Zachary’s Karate Club network which represents friendship
relationships among 34 members where node 1 and node 34
are known to be the instructor and the student founder of
the club, respectively. These two nodes are central in the
network forming two natural clusters around them. We run
the NEO-K-Means with a = 0.2, and b = 0, so in this setting,
the algorithm will make 41 assignments in total, i.e., 7 nodes
can belong to both clusters (note that the number of com-
mon friends of node 1 and node 34 is four, so we are
looking for something a little less than twice the obvious
overlap). Fig. 7 shows the clustering result of the multi-
level NEO-K-Means. We see that the nodes that are
assigned to both clusters have strong interactions with
both of the underlying clusters meaning that the NEO-K-
Means is able to reveal the natural underlying overlap-
ping structure of the network.

8.2.2 Multilevel NEO-K-Means and the Iterative

NEO-K-Means with LRSDP Initialization

on a Small Synthetic Graph

In Section 6, we discuss that we can provide a good initializa-
tion with the iterative NEO-K-Means algorithm using the
LRSDP method. Also, in Section 4.2, we develop a multilevel
NEO-K-Means algorithmby exploiting the problem structure.
We expect that the LRSDP method produces more accurate
and reliable clusterings than the multilevel algorithm in the
regime of medium-scale problems (e.g., tens of thousands of
data points). This regime is ideal because the optimization
based method is more computationally expensive than
the multilevel algorithm, which is an efficient procedure
designed for problemswithmillions of data points. To see the
difference between these methods, we study the behavior on
a synthetic problem with community detection on a cycle
graph. The graph is aWatts-Strogatz random graphwith 100
nodes where each node has edges to five neighbors on each
side of the cycle. We also add random edges based on an
Erd€os-R�enyi graph with an expected degree, which we con-
sider as noise edges. When the noise is low, clusterings
should respect the cycle structure and be continuous, con-
nected regions. Hence, we compute an error measure for
each cluster based on the number of points disconnected
from the largest connected component in the cycle. On this
dataset, we compare three methods: the iterative NEO-K-
Means algorithmwith random initialization (denoted by ran-
dom+neo), the multilevel NEO-K-Means algorithm (denoted
by multilevel neo), and the iterative NEO-K-Means algorithm
with the LRSDP initialization using the ALM method
(denoted by lrsdp+neo). We run 100 trials and plot the the
median, 25th and 75th percentiles of the normalized cut
scores and the number of disconnected nodes by varying the
noise level. Figs. 8a and 8b show the results. By comparing
with the performance of random+neo, we see the effectiveness
of multilevel neo and lrsdp+neo. Note that lrsdp+neo achieves
the best performance in terms of both the normalized cut
and the number of disconnected nodes.

8.2.3 Community Detection on Real-World Networks

We compare the performance of the NEO-K-Means method
with other state-of-the-art overlapping community detec-
tion methods: demon [31], oslom [33], bigclam [32], and
nise [30]. We use seven different real-world networks
from [46] as shown in Table 6. For nise, we use the “Graclus

Fig. 6. The clustering performance of the iterative NEO-K-Means method with different a values.

Fig. 7. Output of the multilevel NEO-K-Means algorithm.

2656 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

centers” seeding strategy and the Fiedler PageRank cluster-
ing scheme. For the NEO-K-Means, we set b ¼ 0 on these
datasets because we expect that one can apply graph-based
pre-processing techniques that remove obvious outliers
(e.g., connected components analysis). We determine a val-
ues such that the output contains a similar amount of com-
munity overlap with the nise method. We use the multilevel
NEO-K-Means algorithm (denoted by NEOml) and the
LRSDP-based NEO-K-Means (denoted by NEOlr).

Also, we try a triangle-cut-based [47] multilevel NEO-K-
Means algorithm (denoted by NEOmlt). In this approach,
we use the weighted adjacency matrix AW ¼ A2 � A where �
denotes a Hadamard product of the matrices and A is
the original adjacency. Then, ½AW �ij indicates the number of
triangles that use the edge fi; jg. Using this weighted graph
AW as an input of themultilevelNEO-K-Means, we are able to
improve the performance of theNEO-K-Means on larger data-
sets that are hard to be processed by the LRSDP approach.
This choice corresponds to using triangles instead of edges in
the definition of conductance [47]. We use the conductance
(denoted by cnd), the weighted triangle conductance [47]
(denoted bywcnd) and themodularity (denoted bymod)met-
rics to gauge the quality of the communities returned by each
of the algorithms. These metrics are considered to be standard
ways tomeasure the cohesiveness of the clusters. Since a good
overlapping community detection method should cover a
large portion of the graph with a set of cohesive clusters, we
compute AUC (Area Under the Curve) of the metric-versus-
coverage. See [30] for the details about how to compute the
AUC score. In Table 7, a higher AUC score indicates a
better clustering result. We notice that demon and oslom
cannot process the Orkut and the LiveJournal networks
because of the scalability issue. We see that the NEO-K-
Means algorithm achieves the highest AUC on all the net-
works, which indicates that it produces the most cohesive
groups of communities.

9 CONCLUSION

Overall, these experiments demonstrate that our non-
exhaustive, overlapping clustering framework has the best
performance in terms of finding the ground-truth clusters
among a large class of state-of-the-art methods. We con-
clude that NEO-K-Means is a useful algorithm to analyze
the complex data in current data-centric applications.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Pro-
gram through the NRF of Korea funded by MOE
(2016R1D1A1B03934766 and NRF-2010-0020210) and the
Engineering Research Center Program through the NRF
funded by the Korean Government MSIT (NRF-2018R1A5
A1059921) to JW, by NSF CAREER award CCF-1149756, IIS-
1422918, IIS-1546488, NSF Center for Science of Information
STC (CCF-0939370), DARPA SIMPLEX, and Sloan Research
Fellowship to DG and by NSF grants CCF-1320746 and
IIS-1546452 to ID. Joyce Jiyoung Whang and Yangyang Hou
contributed equally to this work.

REFERENCES

[1] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 129–137, Mar. 1982.

[2] A. Kumar and R. Kannan, “Clustering with spectral norm and the
k-means algorithm,” in Proc. IEEE 51st Annu. Symp. Found. Com-
put. Sci., 2010, pp. 299–308.

[3] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in Proc. 14th Int. Conf. Neural Inf. Process. Syst.:
Natural Synthetic, 2001, pp. 681–687.

[4] R. Burt, Structural Holes: The Social Structure of Competition.
Cambridge, MA, USA: Harvard Univ. Press, 1995.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, 2009.

Fig. 8. A synthetic study of overlapping community detection on a Watts-
Strogatz cycle graph: (a) & (b) show the normalized cut and the error
measure returned by the iterative NEO-K-Means algorithm with random
initialization, the multilevel NEO-K-Means algorithm, and the iterative
NEO-K-Means algorithm with the LRSDP initialization.

TABLE 6
Real-World Graph Datasets

jVj jEj jVj jEj
Facebook 348 2,866 Amazon 334,863 925,872
HepPh 11,204 117,619 Orkut 731,332 21,992,171
AstroPh 17,903 196,972 LiveJournal 1,757,326 42,183,338
CondMat 21,363 91,286

TABLE 7
AUC Scores (%) on Real-World Graphs in Terms of

Conductance, Weighted Conductance, and Modularity

demon oslom bigclam nise NEOml NEOmlt NEOlr

FB cnd 50.5 68.1 17.0 70.3 71.5 77.0 80.9
wcnd 49.4 57.2 17.9 69.8 74.0 73.3 76.1
mod 6.7 9.3 0.9 9.4 10.3 10.4 11.7

HP cnd 49.7 53.5 37.5 89.8 88.7 89.7 91.7
wcnd 46.5 44.0 17.1 90.4 92.9 93.4 95.1
mod 3.9 0.7 0.9 18.9 16.9 19.4 19.5

AP cnd 43.0 42.0 35.5 84.7 86.1 82.9 86.3
wcnd 43.1 36.1 29.7 88.3 90.5 88.8 90.9
mod 2.2 0.1 0.5 16.4 18.3 16.9 18.3

CM cnd 43.0 57.2 51.3 89.5 91.2 90.2 91.4
wcnd 44.2 55.2 49.3 90.0 92.2 92.8 92.3
mod 0.1 < 0.1 0.6 19.6 20.6 20.3 20.7

AZ cnd 52.0 76.4 68.4 94.1 95.0 90.6 N/A
wcnd 62.1 84.9 73.1 97.5 98.0 95.3 N/A
mod < 0.1 < 0.1 < 0.1 4.9 9.1 14.6 N/A

OK cnd N/A N/A 20.4 71.9 82.1 90.9 N/A
wcnd N/A N/A 28.4 85.8 90.7 95.3 N/A
mod N/A N/A < 0.1 5.0 8.1 19.5 N/A

LJ cnd N/A N/A 4.7 82.2 78.3 78.4 N/A
wcnd N/A N/A 6.0 86.8 87.5 87.8 N/A
mod N/A N/A < 0.1 13.3 9.0 15.4 N/A

A higher AUC score indicates a better clustering result.

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2657

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

[6] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Comput. Geosciences, vol. 10, 1984.

[7] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney,
“Model-based overlapping clustering,” in Proc. 11th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2005,
pp. 532–537.

[8] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognit. Lett., vol. 31, pp. 651–666, 2010.

[9] G. Cleuziou, “An extended version of the k-means method for
overlapping clustering,” in Proc. 19th Int. Conf. Pattern Recognit.,
2008, pp. 1–4.

[10] H. Lu, Y. Hong, W. N. Street, F. Wang, and H. Tong, “Overlapping
clustering with sparseness constraints,” in Proc. IEEE 12th Int.
Conf. Data Mining Workshops, 2012, pp. 486–494.

[11] J. J. Whang, I. S. Dhillon, and D. F. Gleich, “Non-exhaustive, over-
lapping k-means,” in Proc. SIAM Int. Conf. Data Mining, 2015,
pp. 936–944.

[12] Y. Hou, J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Non-
exhaustive, overlapping clustering via low-rank semidefinite pro-
gramming,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery
DataMining, 2015, pp. 427–436.

[13] Y. Hou, J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Fast multiplier
methods to optimize non-exhaustive, overlapping clustering,” in
Proc. SIAM Int. Conf. Data Mining, 2016, pp. 297–305.

[14] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 11, pp. 1944–1957, Nov. 2007.

[15] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[16] M. Grant and S. Boyd, “CVX: Matlab software for disciplined con-
vex programming, version 2.1.” [Online]. Available: http://cvxr.
com/cvx

[17] A. Vandaele, N. Gillis, Q. Lei, K. Zhong, and I. S. Dhillon,
“Coordinate descent methods for symmetric nonnegative matrix
factorization,” CoRR, 2015. [Online]. Available: http://arxiv.org/
abs/1509.01404

[18] L. Yang, D. Sun, and K.-C. Toh, “Sdpnal+: A majorized semi-
smooth newton-cg augmented lagrangian method for semidefin-
ite programming with nonnegative constraints,” Math. Program.
Comput., vol. 7, no. 3, pp. 331–366, 2015.

[19] D. Sun, K.-C. Toh, and L. Yang, “A convergent 3-block semiproxi-
mal alternating direction method of multipliers for conic pro-
gramming with 4-type constraints,” SIAM J. Optim., vol. 25,
pp. 882–915, 2015.

[20] S. Burer and R. D. Monteiro, “A nonlinear programming algorithm
for solving semidefinite programs via low-rank factorization,”
Math. Program., vol. 95, pp. 329–357, 2003.

[21] S. Burer and R. D. Monteiro, “Local minima and convergence in
low-rank semidefinite programming,” Math. Program., vol. 103,
pp. 427–444, 2005.

[22] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM J. Sci. Com-
put., vol. 16, no. 5, pp. 1190–1208, 1995.

[23] R. T. Rockafellar, “Augmented Lagrangians and applications of
the proximal point algorithm in convex programming,” Math.
Oper. Res., vol. 1, no. 2, pp. 97–116.

[24] T. Pennanen, “Local convergence of the proximal point algorithm
and multiplier methods without monotonicity,” Math. Oper. Res.,
vol. 27, no. 1, pp. 170–191, 2002.

[25] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Opti-
mization, vol. 1, no. 3, pp. 127–239, 2014.

[26] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, “The bottlenose dolphin community of doubtful
sound features a large proportion of long-lasting associations:
Can geographic isolation explain this unique trait?” Behavioral
Ecology Sociobiology, vol. 54, pp. pp. 396–405, 2003.

[27] D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial
Computing. Reading, MA, USA: Addison-Wesley, 1993.

[28] Y.-L. Chen and H.-L. Hu, “An overlapping cluster algorithm to
provide non-exhaustive clustering,” Eur. J. Operational Res.,
vol. 173, pp. 762–780, 2006.

[29] S. Chawla and A. Gionis, “k-means–: A unified approach to clus-
tering and outlier detection,” in Proc. SIAM Int. Conf. Data Mining,
2013, pp. 189–197.

[30] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping commu-
nity detection using neighborhood-inflated seed expansion,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 5, pp. 1272–1284, May 2016.

[31] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “Demon:
A local-first discovery method for overlapping communities,”
in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2012, pp. 615–623.

[32] J. Yang and J. Leskovec, “Overlapping community detection at
scale: a nonnegative matrix factorization approach,” in Proc. 6th
ACM Int. Conf. Web Search Data Mining, 2013, pp. 587–596.

[33] A. Lancichinetti, F. Radicchi, J. Ramasco, and S. Fortunato,
“Finding statistically significant communities in networks,” PLoS
One, vol. 6, no. 4, 2011, Art. no. e18961.

[34] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: The state of the art and comparative
study,” ACM Comput. Surveys, vol. 45, no. 4, pp. 43:1–43:35, 2013.

[35] B. Kulis, A. C. Surendran, and J. C. Platt, “Fast low-rank semide-
finite programming for embedding and clustering,” in Proc. Int.
Conf. Artif. Intell. Statist., 2007, pp. 235–242.

[36] J. Peng, “0-1 semidefinite programming for spectral clustering:
Modeling and approximation,” M.S. thesis, Adv. Optimization
Laboratory, McMaster Univ., Hamilton, ON, Canada, 2005.

[37] J. Peng and Y. Wei, “Approximating k-means-type clustering via
semidefinite programming,” SIAM J. Optim., vol. 18, no. 1,
pp. 186–205, 2007.

[38] E. P. Xing and M. I. Jordan, “On semidefinite relaxations for nor-
malized k-cut and connections to spectral clustering,” UC Berke-
ley, Berkeley, CA, USA, Tech. Rep. UCB/USD-3–1265, 2003.

[39] K. Lang, “Fixing two weaknesses of the spectral method,” in Proc.
Conf. Neural Inf. Process. Syst., 2005, pp. 715–722.

[40] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing
objects by their attributes,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2009, pp. 1778–1785.

[41] “Mulan: A Java Library for Multi-Label Learning.” [Online].
Available: http://mulan.sourceforge.net/datasets.html

[42] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognit., vol. 37, pp. 1757–1771,
2004.

[43] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, “Multi-
label classification of music into emotions,” in Proc. Int. Soc. Music
Inf. Retrieval Conf., pp. 325–330, 2008.

[44] F. Pukelsheim, “The three sigma rule,” Amer. Statistician, vol. 48,
no. 2, pp. 88–91, 1994.

[45] A. Strehl and J. Ghosh, “Cluster ensembles – A knowledge reuse
framework for combining multiple partitions,” J. Mach. Learn.
Res., vol. 3, pp. 583–517, 2003.

[46] J. Leskovec, “Stanford network analysis project.” [Online].
Available: http://snap.stanford.edu/

[47] A. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organiza-
tion of complex networks,” Sci., vol. 353, pp. 163–166, 2016.

Joyce Jiyoung Whang received the BS degree
in computer science and engineering from Ewha
Womans University in South Korea, and the PhD
degree in computer science from the University
of Texas at Austin. She is an assistant professor
of computer science and engineering with Sung-
kyunkwan University (SKKU), in South Korea
where she leads the Big Data Lab. Her main
research interests include big data, data mining,
network analysis, and machine learning with spe-
cific interests in community detection and over-
lapping clustering. She is a member of the IEEE.

Yangyang Hou received the BE degree from
Shanghai Jiao Tong University and the PhD
degree from Purdue University. She was a PhD
student and a post-doctoral research associate
with the Department of Computer Science,
Purdue University. She now works with Ant
Financial. Her research interests include matrix
computation and optimization, especially with
application to data mining, network analysis, and
machine learning.

2658 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

http://cvxr.com/cvx
http://cvxr.com/cvx
http://arxiv.org/abs/1509.01404
http://arxiv.org/abs/1509.01404
http://mulan.sourceforge.net/datasets.html
http://snap.stanford.edu/

David F. Gleich received the BSc degree from
Harvey Mudd College, and the PhD degree from
Stanford University. He is the Jyoti and Aditya
Mathur associate professor of computer science
with Purdue University. His research is on data
driven scientific computing, matrix computations,
network and graph algorithms, and parallel and
distributed computing. He has been awarded
aMicrosoft Research Graduate fellowship, the John
von Neumann postdoctoral fellowship, an NSF
CAREERaward, and aSloanResearch Fellowship.

Inderjit S. Dhillon received the BTech degree
from IIT Bombay, and the PhD degree from UC
Berkeley. He is the Gottesman Family Centennial
professor of computer science and mathematics
with UT Austin, where he is also the director of
the ICES Center for Big Data Analytics. His main
research interests include big data, machine
learning, network analysis, linear algebra and
optimization. He has received several awards,
including the ICES Distinguished Research
Award, the SIAM Outstanding Paper Prize, the

Moncrief Grand Challenge Award, the SIAM Linear Algebra Prize, the
University Research Excellence Award, and the NSF Career Award.
He has published more than 175 journal and conference papers, and
has served on the Editorial Board of the Journal of Machine Learning
Research, the IEEE Transactions of Pattern Analysis and Machine Intel-
ligence, the Foundations and Trends in Machine Learning and the SIAM
Journal for Matrix Analysis and Applications. He is a fellow of the ACM,
IEEE, SIAM ,and AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WHANG ET AL.: NON-EXHAUSTIVE, OVERLAPPING CLUSTERING 2659

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on February 22,2020 at 08:40:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

