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ABSTRACT
Web spam detection is one of the most important and challeng-

ing tasks in web search. Since web spam pages tend to have a lot

of spurious links, many web spam detection algorithms exploit

the hyperlink structure between the web pages to detect the spam

pages. In this paper, we conduct a comprehensive analysis of the

link structure of web spam using real-world web graphs to system-

ically investigate the characteristics of the link-based web spam.

By exploring the structure of the page-level graph as well as the

site-level graph, we propose a scalable site-level seeding method-

ology for the Anti-TrustRank (ATR) algorithm. The key idea is to

map a website into a feature space where we learn a classifier to

prioritize the websites so that we can effectively select a set of

good seeds for the ATR algorithm. This seeding method enables

the ATR algorithm to detect the largest number of spam pages

among the competitive baseline methods. Furthermore, we design

work-efficient asynchronous ATR algorithms which are able to

significantly reduce the computational cost of the traditional ATR

algorithm without degrading the performance in detecting spam

pages while guaranteeing the convergence.
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1 INTRODUCTION
Web spam detection is an important task in web search. Given a

web graph with a set of nodes and edges where a node indicates

a web page and an edge indicates a hyperlink between the pages,

search engines exploit the link structure to rank and prioritize the

users’ search results [7], [17]. Web spam refers to web pages that

confuse and mislead the search engines to get higher-than-deserved

rankings. A number of web spam detection methods have been

proposed including link-based methods [27] [10], content-based

methods [5], and hybrid methods [25]. In particular, link analysis

has been considered to be an important feature of a good spam

detection method [3]. Even though a number of link-based spam

detection methods have been proposed, most existing link-based

methods focus on some specific properties of link spam instead of

generalizing and utilizing the diverse characteristics of link spam.

For example, [33] has been proposed to detect a link farm which is

one of the well-known structures of link spam whereas [9] exploits

the clusterable structure of web spam.

We propose a practical link-based web spam detection method

which is based on a systematic analysis of the structure of real-world

web graphs crawled by the NAVER search engine (www.naver.com)

which is the most popular search engine in South Korea. We model

the web using two different types of graphs – the page-level graph

where a node indicates a web page and the site-level graph where

a node indicates a website. Indeed, a thorough investigation of the

real-world web graphs allows us to confirm that the Anti-TrustRank

(ATR) algorithm [18] is a useful method to detect real-world link

spam at the page-level graph because spam pages are likely to be

referred by other spam pages. We discuss the advantages of the

ATR method over other link-based spam detection methods and

how our approaches can be incorporated into other fancier spam

detection methods (e.g., [5], [28]) in practice in Section 8.

Even though how to select seeds in the ATR method plays the

most important role in the success of the ATR algorithm, most

existing seeding methods fail to scale to large-scale web graphs

due to the sparsity of the solution, e.g., PageRank-based [16] seeds

and topic-based seeds [34]. We propose a scalable site-level seeding

methodology where we represent a website as a feature vector

https://doi.org/10.1145/3366424.3385773
https://doi.org/10.1145/3366424.3385773
https://doi.org/10.1145/3366424.3385773
www.naver.com
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and learn a classifier to predict the probability of being spam. By

prioritizing the websites based on the probability, we identify a

set of good seeds which are expected to effectively propagate their

ATR scores to the spam pages. We observe that our seeding method

enables the ATR algorithm to detect the largest number of spam

pages and achieve the highest F1 score among the competitive

baseline methods.

The success of our method is based on a two-level analysis of

link structure, i.e., the site-level and the page-level analysis. While

most existing spam detection methods focus either on classifying

sites (e.g., [9], [26]) or individual web pages (e.g., [16]), we inte-

grate these two ideas into one framework to develop a scalable

spam detection method. Indeed, our methodology can be a practical

solution for a real-world web spam detection problem where we

have a limited budget on labeling the nodes in a large-scale web

graph. In our experiments, we reflect this realistic constraint, and it

is encouraging that our method outperforms other state-of-the-art

methods in this setting. Details are provided in Section 7.1.

Furthermore, we reduce the computational cost of the ATR al-

gorithm by proposing asynchronous ATR algorithms which sig-

nificantly reduce the number of arithmetic operations while guar-

anteeing the convergence. Our residual-based asynchronous ATR

algorithm is much faster than the traditional synchronous ATR

algorithm without degrading performance in detecting spam pages.

Our main contributions can be summarized as follows.

• We explore the real-world web graphs (Section 2). While

most existing spam detection methods consider a single web

graph, we model the web using the page-level graph as well

as the site-level graph. This two-level analysis enables us

to generalize and explain the structure of link spam in the

real-world datasets (Section 3).

• Wepropose an effective and scalable site-level seedingmethod-

ology for the ATR algorithm (Section 4).

• We propose efficient asynchronous ATR algorithms and

prove the convergence (Section 5).

• We show that our seeding method allows the ATR algorithm

to detect the largest number of spam pages and our asynchro-

nous ATR methods significantly reduce the computational

cost of the traditional ATR algorithm (Section 7).

2 REAL-WORLDWEB GRAPHS AND THE
SITE-LEVEL EXAMINATION

We get two real-world web graphs
1
by sampling the original

web graph crawled by the NAVER search engine. We use a variation

of the forest fire graph sampling method [20] to get the two real-

world datasets shown in Table 1. For each of the datasets W1 and

W2, we have two different types of graphs – the page-level graph

(denoted by G) and the site-level graph (denoted by H ). Since a

website consists of a set of web pages, we can construct a site-level

graph by representing each site as a node and adding a directed

edge between two sites if a web page in one site has a hyperlink

1
All our datasets and codes are available at bigdata.cs.skku.edu/down/ATR_2020.zip.

We notice that some benchmark datasets are available on [8] and [4], but these datasets

only include a host-level graph, and do not include a page-level graph. We were not

able to test our methods on these benchmark datasets since our method incorporates

both of the page-level and the site-level graphs, which leads to a more realistic and

scalable solution for a large-scale web spam detection problem.

Table 1: Two Real-World Web Graphs

page-level graph G site-level graph H

W1 No. of normal nodes 797,718 (93.15%) 39,809 (68.63%)

No. of spam nodes 47,301 (5.52%) 7,954 (13.71%)

No. of undefined nodes 11,385 (1.33%) 10,239 (17.66%)

No. of total nodes 856,404 58,002

No. of labeled edges 3,929,401 (99.33%) 83,351 (85.67%)

No. of edges 3,955,939 97,294

W2 No. of normal nodes 797,018 (91.20%) 39,984 (67.32%)

No. of spam nodes 65,259 (7.47%) 8,846 (14.89%)

No. of undefined nodes 11,684 (1.34%) 10,561 (17.78%)

No. of total nodes 873,961 59,391

No. of labeled edges 3,952,584 (99.33%) 84,373 (85.68%)

No. of total edges 3,979,280 98,478

to a web page in the other site. We remove self-loops in G and H .

All the nodes in our datasets W1 and W2 were labeled by human

experts (i.e., the nodes are labeled as spam or normal). We notice

that some sites were closed after the web pages in the sites had

been crawled, and thus we cannot assign the labels to those. These

nodes are denoted by undefined nodes. In Table 1, labeled edges

indicate the edges whose both endpoints have labels.

It took around three months for ten human experts to label the

nodes inW1 andW2. To reduce noise in the labeling process, senior

engineers cross-checked the node labels. They were able to label the

large graphs quickly using some tricks explained below, and indeed,

those tricks are the important heuristics adopted in a large search

engine company where a set of human-labeled seeds is considered

to be a part of important input of a web spam detection system

while there is a limited budget on the human labeling process.

When human experts label the pages and the sites, they can use

some tricks to speed up the labeling process. The key here is to

perform a site-level examination followed by the refinement of the

page labels. This site-level examination is much more efficient and

scalable than a page-level examination (i.e., looking at all individual

pages) in that it requires less number of examinations to label the

same number of pages. Let us provide the details about the site-

level examination. Basically, the human experts are supposed to

examine individual sites instead of individual pages. If a website is

a spam site, the human experts can label the site as spam by just

looking at a few pages inside the site. If a site turns out to be spam,

all the pages in the spam site are considered to be spam pages (by

definition of a spam site). On the other hand, it is not guaranteed

that a normal site always contains only normal pages because a

subset of pages inside a normal site might have been polluted by

spammers while the rest of the pages are normal. Accordingly, it

may take a little more effort to confirm that a page is normal. Even

after the human experts decide to label a site as normal, they need

to examine more pages to check whether the site contains any spam

pages. If there exists a subset of spam pages inside a normal site,

the human experts label those pages as spam. This refinement step

can be done in an efficient way because the human experts exploit

the structure of the URL to label the spam pages.

3 A TWO-LEVEL ANALYSIS OF LINK SPAM
Using the real-world web graphs described in Section 2, we

investigate the link structure of web spam on the page-level graph

bigdata.cs.skku.edu/down/ATR_2020.zip
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Table 2: Different Types of Edges on W1

|E | E( |E |) conclusion p-value

G normal→ normal 3,639,884 3,500,494 |E | > E( |E |) 7.0×10
−23

normal→ spam 2,157 208,725 |E | < E( |E |) 7.9×10
−28

spam→ normal 73,049 207,807 |E | < E( |E |) 7.2×10
−55

spam→ spam 214,311 12,375 |E | > E( |E |) 9.2×10
−63

H normal→ normal 56,647 57,840 |E | , E( |E |) 2.6×10
−2

normal→ spam 17,551 11,771 |E | > E( |E |) 5.6×10
−13

spam→ normal 4,394 11,418 |E | < E( |E |) 9.1×10
−28

spam→ spam 4,759 2,321 |E | > E( |E |) 9.2×10
−21

Table 3: Types of the Between-Site Edges on W1

Source Destination |E | E( |E |) conclusion p-value

Site Page Site Page

Normal Normal Normal Normal 857,565 666,284 |E | > E( |E |) 2.0×10
−20

Normal Normal Normal Spam 13 39,750 |E | < E( |E |) 5.5×10
−17

Normal Normal Spam Spam 1,205 5,611 |E | < E( |E |) 5.1×10
−10

Normal Spam Normal Normal 10,825 39,562 |E | < E( |E |) 9.8×10
−32

Normal Spam Normal Spam 52,392 2,357 |E | > E( |E |) 4.9×10
−55

Normal Spam Spam Spam 121,397 336 |E | > E( |E |) 1.7×10
−85

Spam Spam Normal Normal 5,953 7,361 |E | < E( |E |) 1.3×10
−5

Spam Spam Normal Spam 340 453 |E | < E( |E |) 2.6×10
−3

Spam Spam Spam Spam 3,768 67 |E | > E( |E |) 2.0×10
−52

as well as the site-level graph. Even though there has been extensive

research on link spam [27], most existing approaches focus on either

a page-level graph or a site-level graph, and do not consider both

of the graphs. By analyzing the characteristics of link spam on the

two different levels of graphs, we generalize the structure of link

spam, which allows us to design practical solutions for large-scale

web spam detection problems which will be discussed in Section 4.

3.1 Edge Classification at the Page-level Graph
and the Site-level Graph

As described in Table 1, we have node labels (either normal or

spam) on both G and H . We classify the edges into four categories

based on the labels of their endpoints as shown in Table 2. To check

whether there exist some strong interactions between particular

types of the nodes, we count the number of edges for each category

and compare it with the number of edges in a randomly shuffled

graph where we randomly shuffle the node labels while preserving

the number of each type of the node labels. In Table 2, |E | indicates

the actual number of edges in G and H , and E(|E |) indicates the
expected number of edges when the edges are randomly organized.

For E(|E |), we report the average number of edges over 30 different

random shuffles. To check whether the difference between |E | and

E(|E |) is statistically significant, we conduct a t-test, and report the

p-value and the conclusion with the confidence level of 98%. We

only show the results on W1 because we have similar results on

W2. At the page-level graph G, we see that normal pages tend to

point to other normal pages, which is the idea of the TrustRank

algorithm [16]. Also, spam pages tend to be referred by other spam

pages, which is the principle of the Anti-TrustRank method [18].

These results show that the TrustRank and the Anti-TrustRank

algorithms might work reasonably well at the page-level graph.

On the other hand, at the site-level graph H , it is interesting to

see that the number of edges from normal nodes to spam nodes is

also significant as well as the edges from spam nodes to spam nodes.

This indicates that at the site-level graph, the spam sites can be

pointed by either normal sites or spam sites. To analyze what kind of

configurations can make these types of edges atH , we take a deeper

look at the between-site edges. When we consider an incident node

of a between-site edge, we can think of three cases: (i) the site is

normal and the page is normal, (ii) the site is normal but the page

is spam, (iii) the site is spam and the page is spam. By definition

of a spam site, the pages within a spam site are considered to be

spam pages. Recall the labeling process in Section 2. Thus, given a

between-site edge, there can be nine different types of edges based

on the labels of the source node and the destination node as shown

in Table 3. We observe three significant edge types: NSNS, NSSS,

SSSS (we focus on the edges which are incident to spam nodes).

In particular, the NSSS (Normal site, Spam page, Spam site, Spam

page) type is the most significant pattern. From the site-level view,

this edge type explains the connection from normal nodes to spam

nodes, and thus, we note that the strong connections from normal

to spam observed in Table 2 are mainly due to the interactions

between spam pages in normal sites and those in spam sites. Note

that, from the page-level view, all the three significant types of

edges (i.e., NSNS, NSSS, SSSS) are the edges from spam pages to

spam pages. In what follows, we present the dominant patterns of

link spam in the real-world datasets, which explain the three most

significant edge types observed in Table 3.

3.2 Types of Link-based Web Spam:
Two-level Edge Classification Perspective

The two-level analysis of link structure in Section 3.1 allows us to

figure out dominant patterns of link spam from the page-level and

the site-level viewpoints. By exploring our real-world web graphs,

we observe three dominant configuration types of web spam as

shown in Figure 1 where a blue rectangle indicates a normal site and

a red rectangle indicates a spam site whereas a blue circle indicates

a normal page and a red circle indicates a spam page.

Overpost. As shown in Figure 1(a), a spammer makes a lot of post-

ings in different normal sites to intrigue transactions into the target-

ing spam site. Obviously, the postings are spam pages which contain

the links to the spam pages in the spam site. This configuration

makes the NSSS edge type described in Table 3.

Hacking. Figure 1(b) shows the case where a spammer hacks nor-

mal sites. The spammer makes spam pages in normal sites and the

spam pages are linked to other spam pages. There can be two differ-

ent types of hacking: (i) the interactions between the spam pages

involve a spam site – the upper black triangle in Figure 1(b), (ii) the

interactions between the spam pages only involve normal sites –

the lower black triangle in Figure 1(b). The latter indicates that the

spam content exists in one of the normal sites, and thus there is no

need to have a link to a spam site. In this ‘Hacking’ configuration

type, we can observe the NSSS and NSNS edges shown in Table 3.

Link Farm. Some spam sites and spam pages are designed to be

densely connected with each other to raise PageRank scores so

that they can be indexed by a search engine. Figure 1(c) shows this
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(a) Overpost (b) Hacking (c) Link Farm

Figure 1: Three Dominant Types of Link Spam. A blue rectangle represents
a normal site and a red rectangle represents a spam site. A blue circle repre-
sents a normal page and a red circle represents a spam page.

Figure 2: A Possible Combination of the
Dominant Patterns of Link Spam

structure. This type of configuration is called as a link farm [33]

where we can observe the SSSS edge type in Table 3.

Some variations of the above configurations might have been

studied in various contexts [27]. However, most existing approaches

do not simultaneously consider the page-level and the site-level

analysis, and tend to describe the structure of link spam in an ad hoc

manner. Our contribution is to define explainable building blocks

of link spam by the two-level link analysis. For example, Figure 2

shows a possible real-world link spam which can be explained by a

combination of the aforementioned building blocks.

4 ANTI-TRUSTRANKWITH QUALIFIED
SITE-LEVEL SEEDS

From a search engine perspective, there should be a metric to

determine whether a page is spam or not. Based on our analysis in

Section 3, we note that the Anti-TrustRank (ATR) algorithm [18]

might successfully detect spam pages at the page-level graph be-

cause we observe that spam pages are likely to be referred by other

spam pages. The Anti-TrustRank is a label propagation method

where the labels are propagated from carefully selected seeds. How

to select the seeds plays a critical role in the success of the ATR

algorithm. It is important to note that the seeds should be exam-

ined by human experts to get the labels. To accelerate this labeling

process, we conduct a site-level examination instead of a page-level

examination in practice as described in Section 2. Thus, a key chal-

lenge here is that we should select good seeds for the page-level

propagation while we are only able to conduct a site-level exami-

nation. In this section, we present our solutions for this problem

based on the structural relationship between the page-level and the

site-level graphs described in Section 3.

4.1 The Anti-TrustRank Algorithm
Let us briefly describe the ATR algorithm. Given a graph G =

(V, E), an ATR score is assigned to every node in the graph such

that a node with a high ATR score indicates that the node is likely

to be a spam page. To run the ATR algorithm, we should select

seeds from which the ATR scores start to spread to other nodes

in the graph. Note that the seeds should be spam pages. However,

we do not know where the spam pages are placed in advance. To

determine the spam seeds, we first need to select a set of candidates,

denoted by L which will be examined by human experts (where

L ⊂ V). Note that L might contain normal nodes as well as spam

nodes. After the examination, only spam nodes can be used as the

spam seeds for the ATR algorithm among the nodes in L. Since

the labeling process requires human efforts, the size of L is usually

much smaller than the size of V , which indicates that how to

choose L critically affects the performance of the ATR algorithm.

For example, if we have a bad L, we might end up with failing to

find any spam nodes in L, which means that we cannot run the

ATR algorithm appropriately.

Once we determine the spam seeds, the ATR scores of the spam

seeds are initialized to be ones whereas the ATR scores of the rest

of the nodes are initialized to be zeros. The ATR scores are propa-

gated to incoming neighbors of the spam seeds so that the nodes

having links to spam nodes end up with having high ATR scores.

Indeed, computing the ATR scores can be interpreted as computing

a personalized PageRank (also called as a biased PageRank) on the

reverse graph G ′ = (V, E ′) where E ′
indicates the set of reverse

edges (i.e., if an edge {i, j} ∈ E then {j, i} ∈ E ′
) with the spam

seeds as the teleportation (or personalization) set.

4.2 Qualified Site-level Seeds
To apply the ATR algorithm to large-scale web graphs, we should

select L such that (1) it includes as many spam nodes as possible,

and (2) it includes spam nodes whose ATR scores can effectively

propagate to other spam nodes in the graph. Also, since human

experts conduct a site-level examination as described in Section 2

(i.e., the pages in L are grouped by the sites), we should design a

site-level seeding strategy which satisfies the above objectives.

4.2.1 Feature Representations for Sites. To construct a site-level

seed set, we propose to model each site as a feature vector and build

a classifier that predicts the probability of being spam so that we

can assign higher priority to the sites that are likely to be spam

when we construct L. That is, by mapping the sites into a feature

space, we train a classifier that predicts the label of the sites with

small training data, e.g., 10% of the sites (since labeling sites requires

human efforts, 10% might be a practical upper bound). Then, we

sort the sites according to the probability of being spam to include

the top-ranked sites in L.

In this process, how to represent a site as a feature vector is

an important issue. The features should be able to appropriately
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Table 4: Our Features to Model a Site

in-p: indegree of each page in the site h
out-p: outdegree of each page in the site h
dist: the distances from the site h to all other reachable sites on H̄

entro-in-p: entropy of in-p reachability: no. of reachable sites on H̄
entro-out-p: entropy of out-p cluster: whether h belongs to a spam cluster

mean-dist: mean of dist dmnt-ratio: max. weight/degree of h on H̄w
std-dist: standard deviation of dist no-page: no. of pages in the site h
max-dist: maximum of dist in-page: no. of pages having an edge to h
within-site: no. of within-site edges out-page: no. of pages having an edge from h
in-h: indegree of the site h on H one-hop: no. of one-hop distant sites on H̄
out-h: outdegree of the site h on H two-hop: no. of two-hop distant sites on H̄

discriminate the spam sites from the normal sites. We define 16 fea-

tures as shown in Table 4 where H̄ denotes the undirected version

of H and H̄w denotes the undirected, weighted site-level graph. For

example, entro-in-p considers the entropy of the indegree of each

page in a site h. Since spam pages tend to be referred by machine-

generated pages, each page in a spam site might have the similar

number of inlinks from the outside of the site, which leads to a low

entropy value. On the other hand, in a normal site, usually there are

a few popular pages that receive a lot of inlinks while the rest of the

pages have a few inlinks, which leads to a high entropy value. Thus,

the entro-in-p might be a useful feature to differentiate the spam

sites from the normal sites. The cluster feature in Table 4 indicates

whether a site belongs to a spam cluster or not. To extract this

feature, we perform graph clustering [32] on the site-level graph,

and if more than half of the nodes in a cluster are spam nodes (we

assume that we only know the labels of nodes in a training set), we

consider the cluster to be a spam cluster. If a site belongs to a spam

cluster, the value of the cluster feature is set to be one. If a site does
not belong to a spam cluster, the feature value is set to be zero. This

idea is similar to that of [9] where the host labels are refined based

on graph clustering. While [9] exploits the clusterable structure

of link spam [33] in a post-processing step, we directly encode it

as one of the features to represent a site. Some of the features pre-

sented in Table 4 might include a subset of features studied in a host

classification problem
2
[26]. Even though we cannot explain each

of the 16 features in detail because of lack of space, we empirically

show the usefulness of our features in Section 4.2.3.

4.2.2 Relabeling Hacked Sites. The goal of the site-level seeding is

to efficiently select good spam seeds for the ATR algorithm so that

the ATR scores are well spread to the spam nodes. Let us review

the structure of link spam in Section 3.2. In Figure 1, if we use the

pages in the spam sites as the spam seeds, we can detect all the

spam pages (when we propagate the ATR scores to the incoming

neighbors of the seeds) except the spam pages which are involved

in the lower triangle of the hacking type shown in Figure 1(b). Since

all the sites involved in this lower triangle are normal sites, our

classifier-based seeding might not consider any of these sites as

seeds, which results in failing to detect the hacked spam pages (note

that as long as any of the spam pages in this triangle is not included

in the seeds, the ATR algorithm fails to detect these spam pages).

Therefore, we relabel the hacked sites as spam (instead of normal)

in the training phase so that the hacked sites can be considered

as spam sites, which allows us to include the hacked pages as the

2
webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseI

Table 5: Classification Performance of the Features
W1 W2

node2vec Our Features node2vec Our Features

Accuracy 83.9% 88.0% 82.7% 88.1%
Normal F1 90.6% 92.1% 89.7% 92.2%
Spam F1 46.1% 86.1% 45.1% 86.1%
Avg. Precision 70.5% 88.8% 70.2% 89.0%
Avg. Recall 66.8% 89.4% 65.7% 89.3%
Avg. F1 68.3% 89.1% 67.4% 89.1%

spam seeds for the ATR algorithm. We observe that this relabeling

process leads to improving the performance of the ATR algorithm.

4.2.3 Classification Performance. We test the performance of the

site-level classification to show that our features described in Sec-

tion 4.2.1 are useful. Among well-known classifiers implemented in

Scikit-learn library [24], the random forest [6] shows the best perfor-

mance. In Table 5, we compare our features with the node2vec fea-

tures [14] in terms of the classification performance. The node2vec

method is a state-of-the-art node embedding method that is able to

compute a mapping of nodes to low-dimensional feature vectors.

Even though we know that the parameters of the node2vec method

might be further finely tuned, we note that our features show better

performance than the node2vec features, and our features show

reasonable performance in predicting spam sites.

4.2.4 Qualified Site-level Seeds. Once we learn a classifier to get

the probability of being spam for each site, we construct L by

taking top-ranked sites that are likely to be spam (note that the

hacked sites are also included in this process due to the relabeling

process described in Section 4.2.2). These sites are examined by

human experts as described in Section 2 so that the sites and the

pages are labeled. Finally, the spam pages in L are used as spam

seeds in the ATR algorithm. Let S denote the set of spam seeds

(S ⊆ L). We expect that, with our qualified site-level seeds, the

size of S is large and the nodes in S are good seeds to detect the

spam pages in the page-level graph.

5 WORK-EFFICIENT ANTI-TRUSTRANK
Once we get the spam seeds, the ATR scores should be computed

on the page-level graph which usually consists of more than tens of

billions of nodes. We propose efficient ATR algorithms which sig-

nificantly increase the scalability of the traditional ATR algorithm.

5.1 Synchronous Anti-TrustRank
As described in Section 4.1, computing the ATR scores is identical

to computing the personalized PageRank on the reverse graph with

S as the personalization set. Let A denote the adjacency matrix of

G ′
where G ′

denotes the graph with reverse edges. Let Qi denote

the set of incoming neighbors of node i onG ′
, and Ti denote the set

of outgoing neighbors of node i on G ′
. Let x denote a vector of the

ATR scores, and es denote a vector with ones for the positions of the
spam seeds (i.e., the nodes in S) and zeros for the other positions.

Also, let α denote the damping factor (we use α = 0.85 throughout

the paper), and ϵ denote the tolerance. We assume that there is

no self-loop in the graph. Algorithm 1 describes the traditional

synchronous ATR algorithm where the ATR scores are updated

only after all the nodes recompute the ATR scores.

webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseI
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Algorithm 1: Synchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: while true do
3: for i ∈ V do
4: if i ∈ S then
5: xnewi = α

∑
j∈Qi

x j
|Tj |
+ (1 − α )

6: else
7: xnewi = α

∑
j∈Qi

x j
|Tj |

8: end if
9: δi = |xnewi − xi |
10: end for
11: x = xnew
12: if ∥δ ∥∞ < ϵ then
13: break;

14: end if
15: end while
16: x =

x
∥x∥1

Algorithm 2: Asynchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: for i ∈ V do
3: Add i to workqueue
4: end for
5: while !workqueue.isEmpty do
6: Take i from workqueue
7: if i ∈ S then
8: xnewi = α

∑
j∈Qi

x j
|Tj |
+ (1 − α )

9: else
10: xnewi = α

∑
j∈Qi

x j
|Tj |

11: end if
12: if |xnewi − xi | ≥ ϵ then
13: xi = xnewi
14: for j ∈ Ti do
15: if j is not in workqueue then
16: Add j to workqueue
17: end if
18: end for
19: end if
20: end while
21: x =

x
∥x∥1

Algorithm 3: Residual-based Asynchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: Initialize r = (1 − α )αP T es
3: for ri ≥ ϵ do
4: Add i to workqueue
5: end for
6: while !workqueue.isEmpty do
7: Take i from workqueue
8: xnewi = xi + ri
9: xi = xnewi
10: for j ∈ Ti do
11: roldj = r j

12: r j = r j +
riα
|Ti |

13: if r j ≥ ϵ and roldj < ϵ then
14: Add j to workqueue
15: end if
16: end for
17: ri = 0

18: end while
19: x =

x
∥x∥1

5.2 Asynchronous Anti-TrustRank
Instead of updating the ATR scores of all the nodes at every

iteration, we can design an asynchronous ATR algorithm where

we manage a workqueue that contains a set of nodes whose ATR
scores need to be updated

3
. The idea is that some nodes in a graph

might require frequent updates to get the converged ATR scores

while other nodes might require only a few updates since the degree

distribution of real-world web graphs follows a power-law. There-

fore, if we focus more on the nodes that require more computations

instead of equally updating the ATR scores of all the nodes, we

might be able to compute the ATR scores more efficiently.

Algorithm 2 shows how we can implement this idea. Initially, the

workqueue contains all the vertices. From the workqueue, we take
a node at a time, then compute the ATR score of the node. If the

difference between the newly computed ATR score and the current

ATR score is greater than or equal to the tolerance ϵ , then we up-

date its ATR score. Once a node’s ATR score is updated, we should

recompute the ATR scores of its outgoing neighbors on G ′
(i.e.,

incoming neighbors onG). Thus, whenever we process a node from
the workqueue, we add the outgoing neighbors of the processed

node (on G ′
) to the workqueue. We repeat this process until the

workqueue becomes empty. For the global PageRank problem [7],

a similar approach has been explored in [31] where a data-driven

PageRank has been studied. Algorithm 2 can be considered as an

extension of this idea to the ATR computation where we have a

specialized personalization set for the spam detection task. By ex-

tending the analysis of [23], we theoretically show the convergence

of Algorithm 2 as shown in Theorem 1.

Theorem 1. In Algorithm 2, when x (k)i is updated to x (k+1)

i , the
total residual is decreased at least by ri (1 − α) where ri denotes the
residual of the i-th node.

3
A preliminary version of the asynchronous ATR algorithm has been presented in [30]

without any official proceedings.

Proof. The ATR vector x is computed as follows:

x = αPT x + (1 − α)es

where P is defined as P ≡ D−1A (D is the degree diagonal matrix)

and es is the personalized vector. This is the linear system of

(I − αPT )x = (1 − α)es

and the residual is defined to be

r = (1 − α)es − (I − αPT )x = αPT x + (1 − α)es − x.

Let x
(k )
i denote the k-th update of xi . Since we initialize x as

x = (1 − α)es , the initial residual r(0) can be written as follows:

r(0) = (1 − α)es − (I − αPT )(1 − α)es = (1 − α)αPT es ≥ 0. (1)

For each node i from the workqueue, we update its ATR value

as follows:

[Case 1] i ∈ S

x
(k+1)

i = (1 − α) + α
∑
j ∈Qi

x
(k )
j

|Tj |
,

x
(k+1)

i = x
(k )
i + (1 − α) − x

(k )
i + α[PT x(k )]i︸                              ︷︷                              ︸
r (k )i

= x
(k )
i + r

(k )
i .

[Case 2] i < S

x
(k+1)

i = α
∑
j ∈Qi

x
(k )
j

|Tj |
,

x
(k+1)

i = x
(k )
i − x

(k )
i + α[PT x(k )]i︸                ︷︷                ︸

r (k )i

= x
(k )
i + r

(k )
i .

Thus, we see that

x
(k+1)

i = x
(k)
i + r

(k )
i . (2)
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Also, after such an update, we can show that r(k+1) ≥ 0. Let

γ = r(k)i .

x(k+1) = x(k) + γei
r(k+1) = (1 − α)es − (I − αPT )x(k+1)

r(k+1) = (1 − α)es − (I − αPT )(x(k ) + γei )

r(k+1) = r(k) − γ (I − αPT )ei (3)

Note that the i-th component of r(k+1)
goes to zero, and we

only add positive values to the other components. Since the initial

residual is positive shown in (1), we can see that r(k+1) ≥ 0.

Now, by multiplying eT in (3), we get:

eT r(k+1) =

{
eT r(k) − r

(k )
i (1 − α) : Ti , ∅

eT r(k) − r
(k )
i : Ti = ∅

This implies that when a node i’s ATR value is updated, its residual

ri becomes zero, and αri/|Ti | is added to each of its outgoing neigh-

bors’ residuals (0 < α < 1). Thus, any step decreases the residual

by at least γ (1 − α), and moves x closer to the solution. �

Also, Theorem 2 shows that the converged solution of Algo-

rithm 2 guarantees ∥r∥∞ < ϵ where ϵ denotes the tolerance.

Theorem 2. Algorithm 2 guarantees ∥r∥∞ < ϵ when it is con-
verged.

Proof. When a node’s ATR is updated, the residual of each of

its outgoing neighbors is increased. Thus, whenever we change a

node’s ATR,we need to add its outgoing neighbors to the workqueue
to verify that their residuals are sufficiently small, i.e., their residuals

are smaller than ϵ . This is what Algorithm 2 does. �

5.3 Residual-based Asynchronous
Anti-TrustRank

Based on the analysis in Theorem 1, we note that the new ATR

score of a node can be updated by just adding its current ATR

score and its current residual by (2). To update the ATR scores

in this way, we need to explicitly maintain the residual value for

each node. Note that the residual of a node can be updated by (3).

We design the residual-based asynchronous ATR algorithm shown

in Algorithm 3. Let us compare Algorithm 3 and Algorithm 2. In

Algorithm 2, whenever we update a node’s ATR score, we blindly

add all of its outgoing neighbors (on G ′
) into the workqueue to

verify that their residuals are less than the tolerance. On the other

hand, in Algorithm 3, we explicitly maintain the residual of each

node, which allows us to decide whether a node should be added to

the workqueue or not based on its residual. Thus, in Algorithm 3,

we can avoid the unnecessary repeated computations by filtering

out the work in the workqueue in advance. In Section 7, we show

that Algorithm 3 allows us to significantly reduce the number of

arithmetic operations compared to Algorithm 2.

6 RELATEDWORK
There exist many different types of link-based spamdexing tech-

niques. Similar to the Anti-TrustRank, TrustRank [16] is also one

of the well-known link-based spam detection methods where the

idea is that normal pages tend to point to other normal pages. A

method of propagating both trust and distrust values also has been

considered [36]. Also, [15] measures the impact of link spamming

on a page’s rank while [2] proposes new classification features that

combine link-based features and language model-based ones.

For the TrustRank-based [16] label propagation methods, [34]

proposes to incorporate topical information of pages to select the

seeds, and [35] suggests to expand the seeds by considering rep-

utable seeds. Also, [1] proposes to use a graph-regularized classi-

fication to improve the accuracy of spam detection. For the ATR

algorithm, PageRank-based seeds [16] and inverse PageRank-based

seeds [18] are known to be useful. We compare our seeding method

with these existing seeding strategies in Section 7. While most ex-

isting spam detection methods require a large set of labeled nodes,

our seeding mechanism requires a very small portion of the node

labels as described in Section 4.2. In this realistic setting, we observe

that our seeding methodology is able to identify a high-quality set

of seeds in the real-world web graphs.

A number of variations of PageRank have been proposed to accel-

erate PageRank computations including [21], [22], and [13]. In par-

ticular, [31] has proposed a multi-threaded data-driven PageRank

algorithmwhich provides themotivation of our residual-based asyn-

chronous ATR algorithm. Also, [22] recently proposed a method to

approximate a pairwise personalized PageRank vector. We tried to

customize the recent method proposed in [22] to our spam detec-

tion problem, and realized that our asynchronous ATR algorithm

is much faster. While there has been extensive research on the

variations of PageRank, it is meaningful to explore the convergence

property of the asynchronous ATR algorithm with a specialized set

for the spam detection task.

7 EXPERIMENTAL RESULTS
We conduct experiments on the real-world web graphs discussed

in Section 2 to show the usefulness of the proposed methods.

7.1 Performance in Web Spam Detection
We test the performance of our seeding methodology for the

ATR algorithm. Let QS (an abbreviation of Qualified Seeds) denote

our seeding method described in Section 4.2.

7.1.1 Baseline Methods. To compare the performance in web spam

detection, we consider three different classes ofmethods
4
: (i) classifier-

based methods, (ii) TrustRank with different seeding methods, and

(iii) Anti-TrustRank with different seeding methods.

For the classifier-based methods, we extract features for web

pages, and train a classifier to classify the pages into normal or

spam. To extract reasonable features for the pages, we try two

different methods. In [26], various link-based features have been

proposed to detect spam hosts. Also, some of our features presented

in Table 4 are applicable to modeling a page. Thus, we extract these

features for each web page and represent a page as a 10 dimensional

feature vector. This baseline method is denoted by lfeat. Also,
we can compute node embedding features by using the node2vec

method [14]. This baseline is denoted by nvec.
We implement the TrustRankmethod [16] with a number of well-

known seeding strategies. Among the seeding methods, we observe

4
We also considered SpamRank [3] as a baseline, but we observe that its performance

is not good enough, so it is not comparable to other baseline methods.
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Table 6: The accuracy, F1 score, precision, and recall according to different numbers of examined pages. The QS method
achieves the highest accuracy and F1 scores, and significantly outperforms other methods.

No. of Examined Pages lfeat nvec trust pr-page ipr-page pr-site ipr-site QS

W1 4,000 (0.47% examined) Accuracy 60.80% 94.50% 26.33% 96.00% 94.73% 96.41% 96.25% 98.22%
F1 score 15.90% 5.80% 13.04% 45.67% 11.22% 53.90% 49.95% 81.52%
Precision 9.00% 68.30% 6.98% 95.56% 98.43% 96.14% 99.05% 97.67%

Recall 66.20% 3.00% 99.83% 30.01% 5.95% 37.45% 33.39% 69.95%

6,000 (0.70% examined) Accuracy 89.20% 94.60% 27.39% 96.12% 94.75% 96.86% 96.31% 98.71%
F1 score 21.40% 22.10% 13.21% 48.20% 11.75% 61.98% 51.03% 87.22%
Precision 18.00% 57.00% 7.07% 95.51% 98.27% 96.34% 99.01% 97.60%

Recall 26.40% 13.70% 99.87% 32.23% 6.25% 45.69% 34.37% 78.83%

10,000 (1.17% examined) Accuracy 84.30% 94.40% 35.02% 96.21% 94.78% 97.47% 96.58% 98.88%
F1 score 21.70% 30.90% 14.53% 50.16% 12.77% 71.46% 56.28% 89.12%
Precision 15.10% 49.40% 7.84% 95.14% 98.09% 96.75% 98.89% 97.42%

Recall 38.80% 22.50% 99.83% 34.06% 6.83% 56.65% 39.33% 82.13%

W2 4,000 (0.46% examined) Accuracy 90.70% 92.50% 28.82% 94.79% 92.76% 95.56% 92.80% 96.39%
F1 score 17.80% 4.10% 17.35% 48.21% 8.31 % 64.10% 9.32% 69.07%
Precision 26.80% 73.10% 9.50% 97.10% 98.44% 97.93% 99.81% 98.19%

Recall 13.30% 2.10% 99.92% 32.06% 4.34% 47.64% 4.89% 53.27%

6,000 (0.69% examined) Accuracy 90.50% 92.70% 30.11% 94.90% 92.77% 94.46% 92.88% 98.12%
F1 score 5.00% 17.20% 17.62% 49.97% 8.72% 69.89% 11.20% 86.03%
Precision 10.30% 60.60% 9.66% 96.95% 98.28% 97.87% 99.82% 98.43%

Recall 3.30% 10.00% 99.90% 33.66% 4.56% 54.36% 5.93% 76.41%

10,000 (1.14% examined) Accuracy 73.90% 92.80% 37.51% 94.99% 92.80% 97.11% 94.01% 98.60%
F1 score 28.60% 27.40% 19.30% 51.43% 9.53% 76.75% 34.64% 89.95%
Precision 18.00% 58.30% 10.68% 96.77% 98.11% 98.01% 99.28% 98.22%

Recall 68.90% 17.90% 99.88% 35.02% 5.01% 63.07% 20.98% 82.96%
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Figure 3: Evaluation metrics

that the PageRank-based seeds show the best performance where

L is constructed by taking top-ranked pages according to their

PageRank. Thus, we decide to use these seeds for the TrustRank

method. This baseline is denoted by trust.
For the ATR-based spam detection methods, we consider four dif-

ferent seeding methods. First, the page-level PageRank-based seed-

ing is denoted by pr-page. Second, as suggested in [18], we consider
inverse PageRank (i.e., compute PageRank on the reverse page-level

graph) to rank the pages. Let ipr-page denote this method. We can

also apply these ideas to the site-level graph H to construct the

site-level seed set. Since spam sites usually generate a lot of links

around them (e.g., link farm described in Section 3.2), PageRank

scores on H might allow us to select reasonably good site-level

seeds. Let pr-site and ipr-site denote the site-level PageRank and

inverse PageRank-based seeds, respectively.

7.1.2 Setting and Metrics. We notice that the performance of most

existing spam detection methods had been tested based on the

assumption that they are able to know the labels of a large portion

of the nodes in a graph [11]. For example, [3] uses a 10-fold cross-

validation where they assume that they know 90% of the node

labels. However, in a real-world situation, it might be impractical to

know that much portion of the node labels since labeling requires

human efforts. Thus, in our experiments, we assume that we are

able to examine only a small portion of the nodes by the site-level

examination, e.g., about 10% of the nodes at the site-level graph. In

this realistic setting, we observe that there is a large set of nodes

whose ATR scores are zeros. Therefore, we do not need to set a

threshold to determine whether a node should be classified into

spam or normal. Instead, we consider a node to be spam if its ATR

score is non-zero. This simple strategy allows us to correctly predict

spam nodes. For the ATR-based methods, we run the residual-based

asynchronous ATR algorithm with the tolerance ϵ = 10
−8
. Note

that in our datasets (Table 1), around 90% nodes are normal meaning

that if a spam detection method decides to predict all the nodes as

normal nodes, the accuracy of the method is 90%. Thus, we focus

more on the number of correctly detected spam pages and the F1

score for performance evaluation. Figure 3 shows the metrics we

used to quantify the performance of each method.

7.1.3 Results. We assume that we are able to examine from 4,000

to 10,000 pages by the site-level examination. This corresponds

to around 0.46% to 1.17% of the pages in our graphs. Table 6 and
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(a) W1 dataset (b) W2 dataset
Figure 4: No. of Detected Spam Pages of the ATR Algorithm
with Different Seeding Methods

Table 7: Performance of sync, async, and rasync on W1

sync async rasync

ϵ = 10
−4

No. of Detected Spam Pages 33,088 33,029 33,029

F1 Score 81.52 % 81.67 % 81.67 %

No. of ATR updates 51,384,240 46,680 46,454

e = 4000 No. of Arithmetics 578,549,460 11,170,087 1,765,129

Run Time (milliseconds) 7,596 339 87

ϵ =10
−8

No. of Detected Spam Pages 33,088 33,088 33,088

F1 Score 81.52 % 81.52 % 81.52 %

No. of ATR updates 100,199,268 83,961 83,972

e = 4000 No. of Arithmetics 1,128,171,447 13,009,448 2,673,169

Run Time (milliseconds) 14,952 358 99

ϵ = 10
−4

No. of Detected Spam Pages 38,848 38,797 38,797

F1 Score 89.12 % 89.31 % 89.31 %

No. of ATR updates 52,240,644 54,327 54,093

e = 10000 No. of Arithmetics 588,654,453 11,412,327 1,895,760

Run Time (milliseconds) 7,678 350 98

ϵ =10
−8

No. of Detected Spam Pages 38,848 38,848 38,848

F1 Score 89.12 % 89.12 % 89.12 %

No. of ATR updates 101,055,672 95,631 95,634

e = 10000 No. of Arithmetics 1,138,708,614 13,468,669 2,874,621

Run Time (milliseconds) 14,628 374 111

Figure 4 show the results. Apparently, a good method should have a

balanced precision and recall. Overall, the ATR-basedmethods show

better performance than the classifier-based methods (lfeat and
nvec) and the TrustRank method (trust). We note the TrustRank

scores of most of the nodes are remained as zeros, and thus trust
predicts almost all the nodes to be spam which leads to a high

recall but a low precision. On the other hand, some of the ATR-

based methods achieve better F1 scores meaning that given the

same number of seeds, the ATR method might be able to more

efficiently detect the spam pages than the TrustRank method. More

importantly, we see that the QS method is able to achieve the

highest accuracy and F1 scores on both W1 and W2 datasets, and

the gap between QS and the second best method is significant.

Figure 4 shows the number of detected spam pages of the ATR

algorithm with different seeding methods. We see that QS is able

to detect the largest number of spam pages.

7.2 Computational Cost of Synchronous and
Asynchronous Anti-TrustRank

We investigate the computational cost of the synchronous and

the asynchronous ATR algorithms. Let sync denote Algorithm 1,

async denote Algorithm 2, and rasync denote Algorithm 3. We

use the QS seeding strategy. By varying the tolerance value ϵ and

the number of examined pages e , we compare the the number of

Table 8: Run Time (milliseconds) on W1 and W2

sync async rasync bstab brppr

W1

e=4,000, ϵ=10
−4

7,596 339 87 566 678

e=4,000, ϵ=10
−8

14,952 358 99 1,217 680

e=10,000, ϵ=10
−4

7,678 350 98 678 822

e=10,000, ϵ=10
−8

14,628 374 111 1,775 829

W2

e=4000, ϵ=10
−4

6,526 556 148 821 726

e=4,000, ϵ=10
−8

13,841 1,205 374 1,926 742

e=10,000, ϵ=10
−4

6,212 607 169 707 968

e=10,000, ϵ=10
−8

13,174 1,406 453 1,546 948

Table 9: Parallel sync, async, and rasync on Distributed Machines

Data Information Run Time (minutes)

No. of nodes No. of edges Size of S sync async rasync

59,180,800 82,824,237 2,340,940 86 94 37

152,595,632 274,392,463 3,329,026 191 162 69

57,135,532 732,008,321 4,381,555 516 351 121

556,047,762 1,207,335,482 5,016,499 >2,116 >1,413 163

detected spam pages as well as the F1 score. Also, we count the

number of ATR updates and the number of arithmetic operations,

and measure the run time. Table 7 shows the results on the W1

dataset. We get similar results on the W2 dataset.

We notice that when we set ϵ = 10
−8
, all the three methods

return the identical results in terms of detecting spam pages. If

we set ϵ = 10
−4
, there is a negligible difference between the syn-

chronous and the asynchronous methods. More importantly, when

we compare the number of ATR updates, the asynchronous algo-

rithms, async and rasync, make much fewer ATR updates than the

synchronous algorithm, sync. This is because the asynchronous
algorithms maintain the workqueue to selectively process the nodes
whose ATR scores need to be updated while sync processes all the
nodes at every iteration.

In terms of the space complexity, the asynchronous algorithms

require slightly more spaces than sync due to the workqueue. How-
ever, we note that themaximum length of workqueue is only around
4% of the number of nodes.

When we compare the number of arithmetic operations, the

asynchronous algorithms also save much computation compared to

sync. We see that rasync significantly reduces the number of arith-

metic operations compared to async. As described in Section 5.3,

rasync is able to efficiently reduce the size of the workqueue by

exploiting the problem structure, which results in filtering out un-

necessary computations.

We also compare our ATR algorithms with solution procedures

designed for a general PageRank problem [13] [12]. We consider

BiCGSTAB [13] denoted by bstab and the boundary restricted per-

sonalized PageRank algorithm proposed in [12] denoted by brppr
in Table 8. For a fair comparison, we verify that bstab and brppr
achieve the similar F1 scores with our method. In Table 8, we see

that rasync is the fastest method.

Finally, we also implement the three algorithms, sync, async,
and rasync using Spark 2.3.0 in a distributed system with 64 ma-

chines where each machine has four cores and 28Gmemory. Table 9

shows the results on large datasets. We note that rasync is also the
fastest method in the distributed memory machines.
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8 CONCLUSION & DISCUSSION
We develop a site-level seeding methodology for the ATR algo-

rithm, which leads to remarkably boosting up the performance of

the ATR algorithm. Also, we design a work-efficient asynchronous

ATR algorithm which significantly reduces the computational cost

of the traditional ATR method while guaranteeing convergence.

Among the label propagation-based spam detection methods,

we focus on the ATR algorithm because the ATR method allows us

to detect a large number of spam pages given a small set of high-

quality seeds. While the TrustRank-based [16] methods require a

large set of seeds to appropriately propagate the labels to a large

portion of a graph, the ATR method can efficiently propagate the

ATR scores to many spam pages from a small seed set if we select

core spam pages as seeds due to the densely connected structure

of link spam. Thus, the ATR method might be a reasonable and

practical solution for a large-scale web spam detection problem.

Along with the seeding strategy proposed in this paper, other

spam detectionmethods also can be used to locate good seeds for the

ATR method. For example, we can make the seed set by including

a set of top-ranked spam pages returned by content-based spam

detection methods. Furthermore, the idea of the asynchronous ATR

method can be easily extended to TrustRank [16]. Indeed, we can

simultaneously consider TrustRank and Anti-TrustRank to increase

the accuracy of spam detection. In this way, our methodologies can

be integrated into other spam detection models [28] in practice.

We plan to develop an online ATR algorithm to handle evolving

web graphs. Currently, we use a mini-batch approach to deal with

constantly changing web graphs. We believe that we can incremen-

tally update the ATR scores of a set of newly crawled pages. Also,

we intend to improve our spam detection system by considering

a more sophisticated analysis on the link structure [29] and also

applying recently proposed graph embedding approaches [19].
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