

Scalable Anti-TrustRank with Qualified Site-level Seeds for Link-based Web Spam Detection

Joyce Jiyoung Whang Sungkyunkwan University (SKKU)

Link-based Web Spam Detection

• Web Spam

- spurious links to get higher-than-deserved rankings.
- Web spam detection algorithms exploit the hyperlink structure.

Contributions

- Collect and share two real-world web graphs with labels
- Two-level analysis of link spam
 - Page-level graph and site-level graph
 - ATR is useful to detect real-world link spam
- Effective and scalable **site-level seeding methodology** for ATR
- Asynchronous ATR significantly reduces the computational cost of ATR

Real-world Web Graphs

Crawled by the NAVER search engine (<u>https://www.naver.com/</u>)

		page-level graph G	site-level graph H
W1	No. of normal nodes	797,718 (93.15%)	39,809 (68.63%)
	No. of spam nodes	47,301 (5.52%)	7,954 (13.71%)
	No. of undefined nodes	11,385 (1.33%)	10,239 (17.66%)
	No. of total nodes	856,404	58,002
	No. of labeled edges	3,929,401 (99.33%)	83,351 (85.67%)
	No. of edges	3,955,939	97,294
W2	No. of normal nodes	797,018 (91.20%)	39,984 (67.32%)
	No. of spam nodes	65,259 (7.47%)	8,846 (14.89%)
	No. of undefined nodes	11,684 (1.34%)	10,561 (17.78%)
	No. of total nodes	873,961	59,391
	No. of labeled edges	3,952,584 (99.33%)	84,373 (85.68%)
	No. of total edges	3,979,280	98,478

CyberSafety 2020 (WWW 2020)

Site-level Examination

- A set of human-labeled seeds
 - \rightarrow An input of a web spam detection method
- Perform a site-level examination followed by refinement of page labels.
- Human experts examine web sites instead of pages.
 - All pages inside a spam site are spam.
 - A normal web site may contain some spam pages
 - \rightarrow Exploit the URL structure to label spam pages

Two-level Analysis of Link Spam

- Most existing methods focus on either a page-level graph or a sitelevel graph, and do not consider both of the graphs.
- We **generalize the structure of link spam** by analyzing the characteristics of link spam on the two different levels of graphs.
 - Practical solutions for large-scale web spam detection problems

Page-level Graph

- Normal pages tend to point to other normal pages (TrustRank)
- Spam pages tend be referred by other spam pages (Anti-TrustRank)

		$ \mathcal{S} $	$E(\mathcal{E})$	conclusion	<i>p</i> -value
G	normal \rightarrow normal normal \rightarrow spam spam \rightarrow normal spam \rightarrow spam	3,639,884 2,157 73,049 214,311	3,500,494 208,725 207,807 12,375	$ \mathcal{E} > E(\mathcal{E})$ $ \mathcal{E} < E(\mathcal{E})$ $ \mathcal{E} < E(\mathcal{E})$ $ \mathcal{E} > E(\mathcal{E})$	7.0×10^{-23} 7.9×10^{-28} 7.2×10^{-55} 9.2×10^{-63}
Ħ	normal \rightarrow normal normal \rightarrow spam spam \rightarrow normal spam \rightarrow spam	56,647 17,551 4,394 4,759	57,840 11,771 11,418 2,321	$ \mathcal{E} \neq E(\mathcal{E})$ $ \mathcal{E} > E(\mathcal{E})$ $ \mathcal{E} < E(\mathcal{E})$ $ \mathcal{E} > E(\mathcal{E})$	2.6×10^{-2} 5.6×10^{-13} 9.1×10^{-28} 9.2×10^{-21}

Site-level Graph

• The number of edges **from normal nodes to spam nodes** is also significant as well as the edges **from spam nodes to spam nodes**.

		$ \mathcal{S} $	$E(\mathcal{E})$	conclusion	<i>p</i> -value
G	$normal \rightarrow normal$	3,639,884	3,500,494	$ \mathcal{E} > E(\mathcal{E})$	7.0×10^{-23}
	normal \rightarrow spam	2,157	208,725	$ \mathcal{E} < E(\mathcal{E})$	7.9×10^{-28}
	$spam \rightarrow normal$	73,049	207,807	$ \mathcal{E} < E(\mathcal{E})$	7.2×10^{-55}
	$spam \rightarrow spam$	214,311	12,375	$ \mathcal{E} > E(\mathcal{E})$	9.2×10^{-63}
\overline{H}	$normal \rightarrow normal$	56,647	57,840	$\overline{ \mathcal{E} } \neq \overline{E(\mathcal{E})}$	2.6×10^{-2}
	normal \rightarrow spam	17,551	11,771	$ \mathcal{E} > E(\mathcal{E})$	5.6×10^{-13}
	$spam \rightarrow normal$	4,394	11,418	$ \mathcal{E} < E(\mathcal{E})$	9.1×10^{-28}
	$spam \rightarrow spam$	4,759	2,321	$ \mathcal{E} > E(\mathcal{E})$	9.2×10^{-21}

CyberSafety 2020 (WWW 2020)

- Consider an incident node of a between-site edge
 - (i) The site is **normal** and the page is **normal**
 - (ii) The site is **normal** but the page is **spam**
 - (iii) The site is **spam** and the page is **spam**

- Three significant edge types: NSNS, NSSS, SSSS \rightarrow spam to spam at the page-level graph
- NSSS: normal to spam at the site-level graph

Sour	Source Destinatio		ation	$ \mathcal{S} $	$E(\mathcal{E})$	conclusion	<i>p</i> -value
Site	Page	Site	Page				
Normal	Normal	Normal	Normal	857,565	666,284	$ \mathcal{E} > E(\mathcal{E})$	2.0×10^{-20}
Normal	Normal	Normal	Spam	13	39,750	$ \mathcal{E} < E(\mathcal{E})$	5.5×10^{-17}
Normal	Normal	Spam	Spam	1,205	5,611	$ \mathcal{E} < E(\mathcal{E})$	5.1×10^{-10}
Normal	Spam	Normal	Normal	10,825	39,562	$ \mathcal{E} < E(\mathcal{E})$	9.8×10^{-32}
Normal	Spam	Normal	Spam	52,392	2,357	$ \mathcal{E} > E(\mathcal{E})$	4.9×10^{-55}
Normal	Spam	Spam	Spam	121,397	336	$ \mathcal{E} > E(\mathcal{E})$	1.7×10^{-85}
Spam	Spam	Normal	Normal	5,953	7,361	$ \mathcal{E} < E(\mathcal{E})$	1.3×10^{-5}
Spam	Spam	Normal	Spam	340	453	$ \mathcal{E} < E(\mathcal{E})$	2.6×10^{-3}
Spam	Spam	Spam	Spam	3,768	67	$ \mathcal{E} > E(\mathcal{E})$	2.0×10^{-52}

CyberSafety 2020 (WWW 2020)

Overpost

- A spammer makes a lot of postings in different normal sites to intrigue transactions into the targeting spam site.
- The postings are spam pages which contain the links to the spam pages in the spam site.
- This configuration makes the **NSSS** edge type.

Hacking

- A spammer hacks normal sites. The spammer makes spam pages in normal sites and the spam pages are linked to other spam pages.
- We can observe the **NSSS** and **NSNS** edges.

• Link Farm

- Some spam sites and spam pages are designed to be densely connected with each other to raise PageRank scores so that they can be indexed by a search engine.
- We observe **SSSS** edge types.

• Real-world link spam can be explained by a combination of the aforementioned **building blocks**.

00

CyberSafety 2020 (WWW 2020)

- Anti-TrustRank (ATR)
 - Spam pages are likely to be referenced by other spam pages.
 - Carefully select seed spam pages.
 - Assign ATR scores to the seed spam pages.

- Anti-TrustRank (ATR)
 - From the seeds, the ATR scores are propagated to incoming neighbors of the nodes so that the pages having links to the spam pages end up with having high ATR scores.
 - Pages with high ATR scores are considered

as spam pages.

- The spam seeds should be examined by human experts to get labels.
- Human experts conduct a site-level examination.
- Represent each site as a feature vector and build a classifier that predicts the probability of being spam.
- We prioritize the websites according to the probability for the site-level examination.

Our features to model a site

• entro-in-p: the entropy of the indegrees of pages within a site

in-p: indegree of each page in the site h*out-p*: outdegree of each page in the site h*dist*: the distances from the site h to all other reachable sites on \overline{H}

entro-in-p: entropy of *in-p* entro-out-p: entropy of *out-p* mean-dist: mean of *dist* std-dist: standard deviation of *dist* max-dist: maximum of *dist* within-site: no. of within-site edges in-h: indegree of the site *h* on *H* out-h: outdegree of the site *h* on *H*

reachability: no. of reachable sites on \bar{H} **cluster**: whether h belongs to a spam cluster **dmnt-ratio**: max. weight/degree of h on \bar{H}_w **no-page**: no. of pages in the site h**in-page**: no. of pages having an edge to h**out-page**: no. of pages having an edge from h**out-page**: no. of one-hop distant sites on \bar{H} **two-hop**: no. of two-hop distant sites on \bar{H}

CyberSafety 2020 (WWW 2020) Jo

Classification performance of the features

• Our features show better performance than node2vec features.

		W1	W2		
	node2vec	Our Features	node2vec	Our Features	
Accuracy Normal F1	83.9% 90.6%	88.0% 92.1%	82.7% 89.7%	88.1% 92.2%	
Spam F1 Avg. Precision Avg. Recall	46.1% 70.5% 66.8%	86.1% 88.8% 89.4%	45.1% 70.2% 65.7%	86.1% 89.0% 89.3%	
Avg. F1	68.3%	89.1%	67.4%	89.1%	

Work-Efficient Anti-TrustRank

- Computing Anti-TrustRank (ATR) scores is identical to computing the personalized PageRank (PPR) scores on the reverse graph.
 - Spam seeds in ATR \rightarrow personalization set (predefined nodes) in PPR
- We propose asynchronous Anti-TrustRank algorithms
 - Reduce the computational cost of the traditional ATR algorithm
 - Without degrading performance in spam detection
 - Convergence analysis

Personalized PageRank

Randomly jump to one of the predefined nodes.

Anti-TrustRank

> Randomly jump to one of spam seeds on the reverse graph.

SYNC ATR

The ATR scores are updated after all the nodes re-compute the ATR scores.

SYNC ATR

The ATR scores are updated after all the nodes re-compute the ATR scores.

SYNC ATR

The ATR scores are updated after all the nodes re-compute the ATR scores.

Asynchronous Anti-TrustRank

ASYNC ATR

Worklist A set of nodes whose ATR scores need to be updated

Worklist [b, c, d, e, f, g, b, c] Pop a Push b, c

Asynchronous Anti-TrustRank

ASYNC ATR

Worklist A set of nodes whose ATR scores need to be updated

Worklist [c, d, e, f, g, b, c, a] Pop b Push a

Asynchronous Anti-TrustRank

ASYNC ATR

Worklist A set of nodes whose ATR scores need to be updated

Worklist [d, e, f, g, b, c, a] Pop c

CyberSafety 2020 (WWW 2020)

Residual-based Asynchronous Anti-TrustRank

RASYNC ATR

new ATR = current ATR + current residual (explicitly maintain the residual of each node)

Filtering out unnecessary work in the worklist

Worklist [b, c, d, e, f, g] Pop a

CyberSafety 2020 (WWW 2020)

Residual-based Asynchronous Anti-TrustRank

RASYNC ATR

new ATR = current ATR + current residual (explicitly maintain the residual of each node)

Filtering out unnecessary work in the worklist

Worklist [c, d, e, f, g, a] Pop b Push a

Residual-based Asynchronous Anti-TrustRank

RASYNC ATR

new ATR = current ATR + current residual (explicitly maintain the residual of each node)

Filtering out unnecessary work in the worklist

Worklist [d, e, f, g, a] Pop c

CyberSafety 2020 (WWW 2020)

Convergence of Asynchronous Anti-TrustRank

The Anti-TrustRank \boldsymbol{x} is computes as follow:

$$x = \alpha P^T x + (1 - \alpha) e_s.$$

Where **P** is a row-stochastic matrix ($P = D^{-1}A$) and e_s is the personalized vector. This is the linear system :

$$(1-\alpha P^T)x = (1-\alpha)e_s$$

and the residual :

$$r = (1 - \alpha)e_s - (1 - \alpha P^T)x = \alpha P^T x + (1 - \alpha)e_s - x.$$

When the *j*-th node is processed, the residual is decreased by $r_j^k(1-\alpha)$.

$$e^{T}r^{(k+1)} = e^{T}r^{(k)} - r_{j}^{k}(1-\alpha).$$

Asynchronous Anti-TrustRank Algorithms

Asynchronous Anti-TrustRank

 Require much fewer Anti-TrustRank updates as well as arithmetic operations with the same precision by maintaining a working set.

Residual-based Asynchronous Anti-TrustRank

- Significantly reduces the number of arithmetic computations.
- Able to effectively reduce the size of the working set by filtering out unnecessary computations.

Performance in web spam detection

• Our method (QS) significantly outperforms other methods.

No. of Examined Pages		lfeat	nvec	trust	pr-page	ipr-page	pr-site	ipr-site	QS
4,000 (0.47% examined)	Accuracy	60.80%	94.50%	26.33%	96.00%	94.73%	96.41%	96.25%	98.22%
	F1 score	15.90%	5.80%	13.04%	45.67%	11.22%	53.90%	49.95%	81.52%
	Precision	9.00%	68.30%	6.98%	95.56%	98.43%	96.14%	99.05%	97.67%
	Recall	66.20%	3.00%	99.83%	30.01%	5.95%	37.45%	33.39%	69.95%
6,000 (0.70% examined)	Accuracy	89.20%	94.60%	27.39%	96.12%	94.75%	96.86%	96.31%	98.71%
	F1 score	21.40%	22.10%	13.21%	48.20%	11.75%	61.98%	51.03%	87.22%
	Precision	18.00%	57.00%	7.07%	95.51%	98.27%	96.34%	99.01%	97.60%
	Recall	26.40%	13.70%	99.87%	32.23%	6.25%	45.69%	34.37%	78.83%
10,000 (1.17% examined)	Accuracy	84.30%	94.40%	35.02%	96.21%	94.78%	97.47%	96.58%	98.88%
	F1 score	21.70%	30.90%	14.53%	50.16%	12.77%	71.46%	56.28%	89.12%
	Precision	15.10%	49.40%	7.84%	95.14%	98.09%	96.75%	98.89%	97.42%
	Recall	38.80%	22.50%	99.83%	34.06%	6.83%	56.65%	39.33%	82.13%

- No. of detected spam pages of the ATR algorithm with different seeding methods
 - Our seeding method (QS) detects the largest number of spam pages.

CyberSafety 2020 (WWW 2020)

- async and rasync save much computation compared to sync.
- rasync reduces the number of arithmetic operations compared to async.

		sync	async	rasync
	No. of Detected Spam Pages	33,088	33,029	33,029
$c = 10^{-4}$	F1 Score	81.52 %	81.67 %	81.67 %
e = 10	No. of ATR updates	51,384,240	46,680	46,454
e = 4000	No. of Arithmetics	578,549,460	11,170,087	1,765,129
	Run Time (milliseconds)	7,596	339	87
	No. of Detected Spam Pages	33,088	33,088	33,088
$c = 10^{-8}$	F1 Score	81.52 %	81.52 %	81.52 %
e = 10	No. of ATR updates	100,199,268	83,961	<u> </u>
<i>e</i> = 4000	No. of Arithmetics	1,128,171,447	13,009,448	2,673,169
	Run Time (milliseconds)	14,952	358	99

CyberSafety 2020 (WWW 2020)

- Run Time (milliseconds) of the algorithms
 - **rasync** is the fastest method.

		sync	async	rasync	bstab	brppr
	e=4,000, $\epsilon = 10^{-4}$	7,596	339	87	566	678
\mathbf{W}_{1}	$e=4,000, \epsilon=10^{-8}$	14,952	358	99	1,217	680
W I	$e=10,000, \epsilon=10^{-4}$	7,678	350	98	678	822
	$e=10,000, \epsilon=10^{-8}$	14,628	374	111	1,775	829
W2	e=4000, $\epsilon = 10^{-4}$	6,526	556	148	821	726
	$e=4,000, \epsilon=10^{-8}$	13,841	1,205	374	1,926	742
	$e=10,000, \epsilon=10^{-4}$	6,212	607	169	707	968
	$e=10,000, \epsilon=10^{-8}$	13,174	1,406	453	1,546	948

CyberSafety 2020 (WWW 2020)

- Parallel sync, async, and rasync on distributed machines
 - **rasync** is the fastest method.

Da	ta Information	Run 7	Run Time (minutes)			
No. of nodes	No. of edges	Size of ${\cal S}$	sync	async	rasync	
59,180,800	82,824,237	2,340,940	86	94	37	
152,595,632	274,392,463	3,329,026	191	162	69	
57,135,532	732,008,321	4,381,555	516	351	121	
556,047,762	1,207,335,482	5,016,499	>2,116	>1,413	163	

Conclusion

- We develop a **site-level seeding methodology** for the ATR algorithm, which leads to remarkably boosting up the performance of the ATR algorithm.
- We design a work-efficient **asynchronous ATR algorithm** which significantly reduces the computational cost of the traditional ATR method while guaranteeing convergence.
- Our methodologies can be **integrated into other spam detection models** in practice, e.g., considering both TrustRank and Anti-TrustRank.

Big Data Lab

- Email : jjwhang@skku.edu
- Homepage : http://bigdata.cs.skku.edu
- Office : Engineering Building 2, #27326
- Lab : Engineering Building 2, #26315B

CyberSafety 2020 (WWW 2020)