
Fast Asynchronous Anti-TrustRank for Web Spam Detection
Joyce Jiyoung Whang∗1, Yeonsung Jung1, Inderjit S. Dhillon2, Seonggoo Kang3, and Jungmin Lee3

1 Sungkyunkwan University (SKKU), 2 The University of Texas at Austin, 3 Naver Corporation.
ACM International Conference on Web Search and Data Mining (WSDM)

Workshop on MIS2: Misinformation and Misbehavior Mining on the Web, 2018

Main Contributions

I Asynchronous Anti-TrustRank algorithms
I Significantly reduce the number of arithmetic operations compared

to the traditional synchronous Anti-TrustRank algorithm
I Without degrading the performance in detecting Web spams

I Convergence of the asynchronous Anti-TrustRank algorithms
I Experiments on a real-world Web graph indexed by NAVER which is

the most popular search engine in Korea.

Notation

I G′ = (V , E ′): a graph with reverse edges, i.e., if an edge {i , j} ∈ E
then {j , i} ∈ E ′. Also, let A denote the adjacency matrix of G′.

I P ≡ D−1A (D is the degree diagonal matrix)
I Qi: the set of incoming neighbors of node i on G′

I Ti: the set of outgoing neighbors of node i on G′

I x: a vector of the ATR scores, r: a vector of the residuals
I es: a vector with ones for the positions of the seed spam documents

and zeros for other positions

Anti-TrustRank∗

I Spam pages are likely to be referred by other spam pages.
I Documents with high Anti-TrustRank (ATR) score→ spam pages
I From spam seeds, the ATR scores are propagated to incoming

neighbors of the nodes so that the documents having links to the
spam documents end up with having high ATR scores.
* V. Krishnan et al., Web spam detection with anti-trust rank. AIRWeb, 2006.

Algorithms

I Synchronous Anti-TrustRank (SYNC ATR)
I The scores are updated after all the nodes re-compute the scores.

I Asynchronous Anti-TrustRank (ASYNC ATR)
I worklist: a set of nodes whose ATR scores need to be updated.

I Residual-based Asynchronous Anti-TrustRank (RASYNC ATR)
I new ATR = current ATR + current residual

(explicitly maintain the residual of each node)
I Filtering out unnecessary work in the worklist.

Pseudocodes

Algorithm: SYNC ATR

Input: G′ = (V , E ′), S, α, ε
Output: ATR vector x
1: Initialize x = (1− α)es

2: while true do
3: for i ∈ V do
4: if i ∈ S then
5: xnew

i = α
∑
j∈Qi

xj

|Tj |
+ (1−α)

6: else
7: xnew

i = α
∑
j∈Qi

xj

|Tj |
8: end if
9: δi = |xnew

i − xi |
10: end for
11: x = xnew

12: if ‖δ‖∞ < ε then
13: break;
14: end if
15: end while
16: x =

x
‖x‖1

Algorithm: ASYNC ATR

Input: G′ = (V , E ′), S, α, ε
Output: ATR vector x
1: Initialize x = (1− α)es

2: for i ∈ V do
3: wlist.push(i)
4: end for
5: while !wlist.empty do
6: i = wlist.pop()
7: if i ∈ S then
8: xnew

i = α
∑
j∈Qi

xj

|Tj |
+ (1− α)

9: else
10: xnew

i = α
∑
j∈Qi

xj

|Tj |
11: end if
12: if |xnew

i − xi | ≥ ε then
13: xi = xnew

i
14: for j ∈ Ti do
15: if j is not in wlist then
16: wlist.push(j)
17: end if
18: end for
19: end if
20: end while
21: x =

x
‖x‖1

Algorithm: RASYNC ATR

Input: G′ = (V , E ′), S, α, ε
Output: ATR vector x
1: Initialize x = (1− α)es

2: Initialize r = (1− α)αPT es

3: for i ∈ V do
4: wlist.push(i)
5: end for
6: while !wlist.empty do
7: i = wlist.pop()
8: xnew

i = xi + ri

9: for j ∈ Ti do
10: rold

j = rj

11: rj = rj +
riα

|Ti |
12: if rj ≥ ε and rold

j < ε then
13: wlist.push(j)
14: end if
15: end for
16: ri = 0
17: end while
18: x =

x
‖x‖1

Experimental Results

I Real-world Web graph from NAVER corporation
I 584,092 documents and 2,470,557 edges
I 437,386 (74.88%) normal docs and 45,641 (7.81%) spam docs
I 101,065 (17.30%) documents are unlabeled.

I Most of the retrieved documents are correctly classified into spam.
I |L| = p|V| where L denotes the set of labeled documents
I Pick top q|S| documents where S denotes the set of spam seeds

Table: Accuracy of the retrieved documents

q = 1 q = 3 q = 5
p = 0.01 spam docs 1,367 (100%) 4,099 (99.951%) 6,833 (99.971%)

normal docs 0 (0%) 0 (0%) 0 (0%)
unlabeled docs 0 (0%) 2 (0.049%) 2 (0.029%)

p = 0.02 spam docs 3,083 (100%) 9,113 (98.530%) 15,279 (99.117%)
normal docs 0 (0%) 107 (1.157%) 107 (0.694%)

unlabeled docs 0 (0%) 29 (0.314%) 29 (0.188%)
p = 0.03 spam docs 3910 (100%) 11,593 (98.832%) 19,413 (99.299%)

normal docs 0 (0%) 107 (0.912%) 107 (0.547%)
unlabeled docs 0 (0%) 30 (0.256%) 30 (0.154%)

I The asynchronous algorithms, ASYNC and RASYNC, make much
fewer ATR updates than the synchronous algorithm, SYNC.

I RASYNC significantly reduces the number of arithmetic computations.

Table: No. of ATR updates and arithmetic operations

p ε SYNC ASYNC RASYNC
0.01 10−8 No. of ATR updates 2,336,368 20,361 20,361

No. of arithmetics 24,442,660 8,424,970 2,516,097
10−12 No. of ATR updates 2,920,460 39,483 39,483

No. of arithmetics 30,553,325 17,845,604 3,284,207
0.03 10−8 No. of ATR updates 2,336,368 20,628 20,628

No. of arithmetics 24,452,832 10,716,065 2,703,630
10−12 No. of ATR updates 2,920,460 39,804 39,804

No. of arithmetics 30,566,040 25,817,600 3,932,405

J. J. Whang et al., Fast Asynchronous Anti-TrustRank for Web Spam Detection. In WSDM, 2018. ∗Corresponding author.

