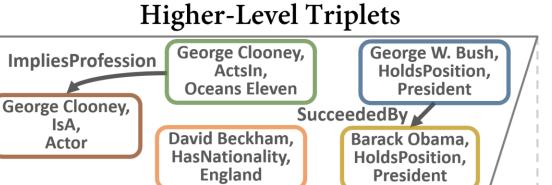
Learning Representations of Bi-Level Knowledge Graphs for Reasoning beyond Link Prediction

Chanyoung Chung and Joyce Jiyoung Whang* School of Computing, KAIST, *Corresponding Author The 37th AAAI Conference on Artificial Intelligence (AAAI 2023)



Main Contributions

- Define a **Bi-Level Knowledge Graph**, which represents **the relationships** between triplets as well as the relationships between entities.
 - Create three real-world bi-level knowledge graphs: FBH, FBHE, DBHE
- Propose a random-walk-based data augmentation strategy on Bi-level KGs.
- **BiVE** (embedding of **Bi**-leVel knowledg**E** graphs): embedding model which takes into account **base-level**, **higher-level** and **augmented** triplets.
- Propose two new tasks: Triplet Prediction and Conditional Link Prediction

Bi-Level Knowledge Graph

- There can be meaningful relationships between triplets.
 - T_1 : (Biden, HoldsPosition, Vice President), T_2 : (Obama, HoldsPosition, President)
- Base-Level Knowledge Graph
 - $G = (\mathcal{V}, \mathcal{R}, \mathcal{E})$
 - \mathcal{V} : a set of entities
 - \mathcal{R} : a set of relations • *E*: a set of base-level triplets

BiVE: embedding of Bi-leVel knowledgE graphs

- Loss incurred by the **base-level triplets** (*L*_{base})
- $L_{\text{base}} = \sum_{(h,r,t)\in\mathcal{E}_{\text{train}}} g(-f(\mathbf{h},\mathbf{r},\mathbf{t})) + \sum_{(h',r',t')\in\mathcal{E}'_{\text{train}}} g(f(\mathbf{h}',\mathbf{r}',\mathbf{t}'))$
 - $q(x) = \log(1 + \exp(x))$
- We can use any knowledge graph embedding scoring function for $f(\cdot)$.
 - **BiVE-Q**: uses the scoring function of QuatE
 - **BiVE-B**: uses the scoring function of BiQUE
- Loss incurred by the **higher-level triplets** (*L*_{high})
 - $L_{\text{high}} = \sum_{(T_i, \hat{r}, T_j) \in \mathcal{H}_{\text{train}}} g(-f(\mathbf{T}_i, \hat{\mathbf{r}}, \mathbf{T}_j)) + \sum_{(T'_i, \hat{r}', T'_i) \in \mathcal{H}'_{\text{train}}} g(f(\mathbf{T}'_i, \hat{\mathbf{r}}', \mathbf{T}'_j))$
 - $\mathbf{T}_i = \mathbf{W}[\mathbf{h}_i; \mathbf{r}_i; \mathbf{t}_i]$ is the embedding vector of $T_i = (h_i, r_i, t_i)$.
- Loss incurred by the augmented triplets (L_{aug})
 - $L_{\text{aug}} = \sum_{(h,r,t)\in\mathcal{S}} g(-f(\mathbf{h},\mathbf{r},\mathbf{t})) + \sum_{(h',r',t')\in\mathcal{S}'} g(f(\mathbf{h}',\mathbf{r}',\mathbf{t}'))$
 - *S* is the set of augmented triplets.
- Loss Function of BiVE: $L_{BiVE} = L_{base} + \lambda_1 \cdot L_{high} + \lambda_2 \cdot L_{aug}$
- To solve a triplet prediction problem $\langle T_i, \hat{r}, ? \rangle$, compute $F_{tp} = f(\mathbf{T}_i, \hat{\mathbf{r}}, \mathbf{X})$ for every base-level triplet $X \in \mathcal{E}_{\text{train}}$.
- To solve a conditional link prediction problem $\langle T_i, \hat{r}, (h_i, r_i, ?) \rangle$, compute $F_{clp} = f(\mathbf{h}_i, \mathbf{r}_i, \mathbf{x}) + \lambda_1 \cdot f(\mathbf{T}_i, \hat{\mathbf{r}}, \boldsymbol{W}[\mathbf{h}_i; \mathbf{r}_i; \mathbf{x}])$ for every $x \in \mathcal{V}$.

- Higher-Level Triplets \mathcal{H}
 - Relationships between triplets
 - e.g., $\langle T_1, \text{WorksFor}, T_2 \rangle$
- Bi-Level Knowledge Graph
- $\widehat{G} = (\mathcal{V}, \mathcal{R}, \mathcal{E}, \widehat{\mathcal{R}}, \mathcal{H})$
- $\widehat{\mathcal{R}}$: a set of higher-level relations • e.g., WorksFor

WorksFor PrerequisiteFor Joe Biden, David Beckham, PlaysFor, HoldsPositior Vice President **England National Team** Oceans Columbia George Actor Eleven University W. Bush Barack England George President Obama Clooney National Team Joe Biden David **Beckham** England **Base-Level Triplets**

Real-World Bi-Level Knowledge Graphs

• Create three real-world bi-level knowledge graphs: FBH, FBHE, DBHE • FBH and FBHE are based on FB15K237 and DBHE is based on DB15K.

	\hat{r}	$\langle T_i, \hat{r}, T_j \rangle$	
	DroroquiaitaEar	<i>T_i</i> : (Beckham, HasNationality, England)	
FBHE	PrerequisiteFor	<i>T_j</i> : (Beckham, PlaysFor, England National Team)	
ΓDΠΕ	WorksFor	T_i : (Joe Biden, HoldsPosition, Vice President)	Externally-sourced
	VVOIKSFUI	T_j : (Barack Obama, HoldsPosition, President)	Knowledge

Triplet Prediction and Conditional Link Prediction

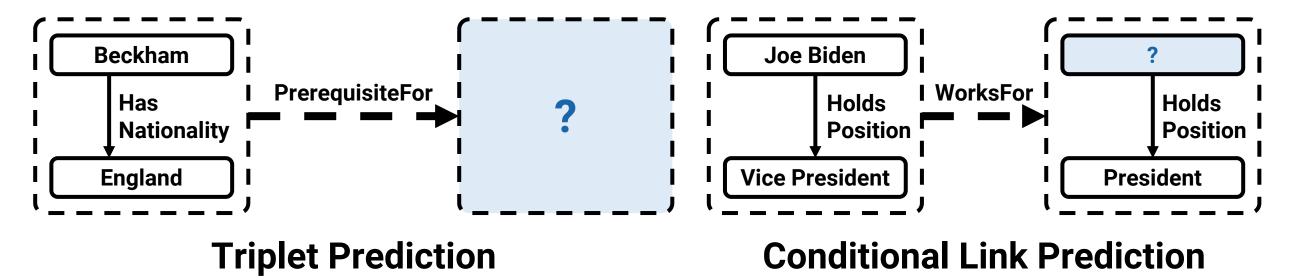
- Triplet Prediction
 - Predicts a triplet connected to a given triplet by a higher-level relation.
 - ((Beckham, HasNationality, England), PrerequisiteFor, ?))
 - Answer: (Beckham, PlaysFor, England National Team)
- Conditional Link Prediction
 - Predicts a missing entity in a triplet conditioned by another triplet. • ((Joe Biden, HoldsPosition, Vice President), WorksFor, (?, HoldsPosition, President)) • Answer: Barack Obama

Experimental Settings

• Statistics of the datasets used in the experiments

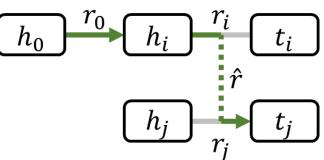
	V	$ \mathcal{R} $	$ \mathcal{E} $	$ \widehat{\mathcal{R}} $	$ \mathcal{H} $	$ \hat{\mathcal{E}} $	
FBH	14,541	237	310,117	6	27,062	33,157	No.
FBHE	14,541	237	310,117	10	34,941	33,719	in th
DBHE	12,440	87	68,296	8	6,717	8,206	

- on of base-level triplets involved the higher-level triplets
- 12 baseline methods: ASER, MINERVA, Multi-Hop, AnyBURL, Neural-LP, DRUM, PTransE, RPJE, TransD, ANALOGY, QuatE, BiQUE


Experimental Results

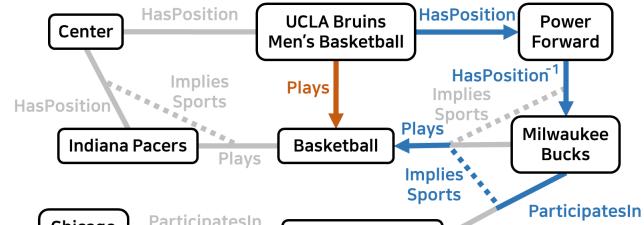
Results of Triplet Prediction (TP)

	FBH		FBHE		DBHE	
	MR	Hit@10	MR	Hit@10	MR	Hit@10
Best-baseline	74277.3	0.117	52159.4	0.318	16698.1	0.230
BiVE-Q	18.7	0.853	33.1	0.683	56.6	0.523
BiVE-B	19.7	0.837	27.9	0.718	4.7	0.914


Results of Conditional Link Prediction (CLP)

	FBH		FBHE		DBHE	
	MR	Hit@10	MR	Hit@10	MR	Hit@10
Best-baseline	111.0	0.686	90.1	0.753	19.3	0.780
BiVE-Q	7.0	0.906	11.0	0.839	12.5	0.828
BiVE-B	6.6	0.911	12.8	0.834	3.2	0.958

Data Augmentation Strategy based on Random Walks


- Step 1. Perform Random Walks by following base-level/higher-level triplets.
 - Random Walk Path: Sequence of entities, relations, higher-level relations
 - **Relation Sequence** p_k : Sequence of relations and higher-level relations extracted from a random walk path

Random walk path $w = h_0, r_0, h_i, r_i, \hat{r}, r_j, t_j$

Relation sequence $p_k = r_0, r_i, \hat{r}, r_j$

- $(h_0, r_0, h_i, r_i, \hat{r}, r_j, t_j) \rightarrow (h_0, p_k, t_j)$
- Step 2. Calculate the **Confidence Score** $c(p_k, r)$.
 - Probability that the entity pair connected by p_k is also connected by r
- Step 3. Augment triplets with high confidence scores.

Relation sequence p_k :

(HasPosition, HasPosition⁻¹, ParticipatesIn, ImpliesSports, Plays)

Relation *r*: Plays

- BiVE outperforms 12 different baseline methods on both **TP** and **CLP**.
- BiVE shows comparable base-level link prediction results to baselines.
- **Examples of Conditional Link Prediction**
- ((Joe Jonas, IsA, ?), ImpliesProfession, (Joe Jonas, IsA, Actor))
 - Prediction made by BiVE-Q: Voice Actor
- ((Joe Jonas, IsA, ?), ImpliesProfession, (Joe Jonas, IsA, Musician))
 - Prediction made by BiVE-Q: **Singer-songwriter**

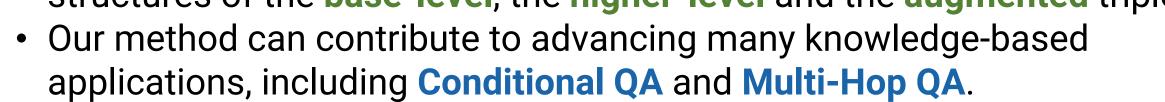
Analysis on the Augmented Triplets

Examples of the augmented triplets in *FBHE* and *DBHE*

Relation Sequence p_k	Relation r	$c(p_k,r)$	Examples of the Augmented Triplets
Plays, Plays ⁻¹ , ImpliesSports, HasPosition	HasPosition	0.78	(Bayer 04 Leverkusen, HasPosition, Forward)
Program ⁻¹ , Program, Language	Language	0.70	(David Copperfield, Language, English)
IsPartOf, IsPartOf, ImpliesLocation, IsPartOf	IsPartOf	0.76	(San Pedro, IsPartOf, California)
IsProducedBy ⁻¹ , IsProducedBy, ImpliesProfession, IsA	IsA	0.73	(Jim Wilson, IsA, Film Producer)

• Statistics of the Augmented Triplets

	FBH	FBHE	DBHE
No. of augmented triplets	16,601	17,463	2,026
$ S \cap \mathcal{E}_{valid} + S \cap \mathcal{E}_{test} $	5,237	5,380	316


No. of the augmented triplets contained in either \mathcal{E}_{valid} or \mathcal{E}_{test}

• Our augmented triplets include many ground-truth triplets that are missing.

Conclusion & Future Work

 We define a bi-level knowledge graph by introducing the higher-level relations between triplets, and **BiVE** successfully incorporates the structures of the **base-level**, the **higher-level** and the **augmented** triplets.

