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Main Contributions

* Propose Dynamic Relation-Attentive Graph Neural Networks (DRAG) to
detect fraudsters on graphs with heterophily.

» Learn a node representation per relation and aggregate the
representations by assigning a different attention coefficient to each relation.

« Combine the intermediate representations of each layer using a learnable
attention function to consider both the local and global structures.

* By employing a dynamic attention mechanism in all the aggregation
processes, DRAG computes the attention coefficients for each node.

V¥ GitHu

H KAIST

“BDILa

BIG DATAINTELLIGENCE

Aggregation with Multiple Layers

* The final node representation is computed by aggregating intermediate
node representations from different layers.

 Attention coefficients learn the importance of each layer’s representation.

» Using the final representation of each node, DRAG predicts the node label.
Relation-Attentive Aggregation

 DRAG outperforms state-of-the-art graph-based fraud detection methods.

Graph-based Fraud Detection

* Fraud detection aims to discover fraudsters deceiving other users.
* e.g., Discovering fake reviews or abnormal transactions.

 Graph-based fraud detection methods represent objects that should be
determined to be fraud or benign as nodes.

* e.g., In YelpChi dataset, nodes are reviews and edges are created based
on three different factors: user, star rating, time.
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Experiments

» Baseline Methods: MLP, GraphSAGE, GAT, GATv2, FRAUDRE,
CARE-GNN, PC-GNN, BWGNN-Homo, BWGNN-Hetero

* Fraud Detection on Benchmark Datasets
* The results using different percentage of labels (1%, 40%) are reported.
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By utilizing the dynamic attention mechanism, attention coefficients can vary
depending on each target node.

Qualitative Analysis and Ablation Studies

e Distributions of the Attention Coefficients

Overview of DRAG

« Many real-world graphs include different types of relations.

* The attention coefficient values are not concentrated on specific values,
and some of their distributions are multimodal.

» Relation-aware approaches have shown superior performance over the
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Attention Coefficients of Relations
* Ablation Studies
* AUC scores on YelpChi using different percentages of labels

Attention Coefficients of Layers

« DRAG computes node representations using relation-wise and layer-wise
dynamic attention mechanisms.

1% 40%
DRAG 0.8279 0.9233
without relation types 0.7200 0.8716
 DRAG decomposes the original graph by relations to learn a node without layer aggregation 0.7153 0.8775
representation per relation along with a self-transformation. with only a single layer 0.8214 0.9076

* Consider the self-loop used in self-transformation as another relation.
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Conclusion & Future Work

* Propose DRAG, a dynamic attention-based fraud detection method,
performing relation-wise and layer-wise attentive aggregations.

By dynamically adapting the attention coefficients for individual nodes,
DRAG Is especially effective In fraud detection on graphs with heterophily.

* Plan to extend DRAG to handle evolving graphs where new nodes appear
and new edges are formed over time.
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Self-transformation

* At each layer, DRAG aggregates the multiple node representations for
each node with different learnable weights for the relations.

GitHub: https://github.com/bdi-lab/DRAG

Lab Homepage: https://bdi-lab.kaist.ac.kr



