Dynamic Relation-Attentive Graph Neural Networks for Fraud Detection

Heehyeon Kim, Jinhyeok Choi, and Joyce Jiyoung Whang*

* Corresponding Author School of Computing, KAIST The 23rd IEEE International Conference on Data Mining (ICDM 2023) Machine Learning on Graphs (MLoG) Workshop

Main Contributions

- Propose Dynamic Relation-Attentive Graph Neural Networks (DRAG) to detect fraudsters on graphs with heterophily.
 - Learn a node representation per relation and aggregate the representations by assigning a different attention coefficient to each relation.
 - Combine the intermediate representations of each layer using a learnable attention function to consider both the local and global structures.
 - By employing a dynamic attention mechanism in all the aggregation processes, DRAG computes the attention coefficients for each node.
- DRAG outperforms state-of-the-art graph-based fraud detection methods.

Aggregation with Multiple Layers

- The final node representation is computed by aggregating intermediate node representations from different layers.
 - Attention coefficients learn the importance of each layer's representation.
- Using the final representation of each node, DRAG predicts the node label.

Relation-Attentive Aggregation

Graph-based Fraud Detection

- Fraud detection aims to discover fraudsters deceiving other users.
 - e.g., Discovering fake reviews or abnormal transactions.
- Graph-based fraud detection methods represent objects that should be determined to be fraud or benign as nodes.
 - e.g., In YelpChi dataset, nodes are reviews and edges are created based on three different factors: user, star rating, time.

Dynamic Attention Mechanism

 The dynamic attention swaps the order of operations of applying a linear projection layer and the non-linear function.

$$\mathbf{h}_{i}^{(l)} = \sigma \left(\sum_{v_{i} \in \mathcal{N}_{i}} \alpha_{i} \mathbf{P}^{(l)} \mathbf{h}_{j}^{(l)} \right)$$

Aggregation with Multiple Layers

Fraud Detection

Experiments

- Baseline Methods: MLP, GraphSAGE, GAT, GATv2, FRAUDRE, CARE-GNN, PC-GNN, BWGNN-Homo, BWGNN-Hetero
- Fraud Detection on Benchmark Datasets
 - The results using different percentage of labels (1%, 40%) are reported.

		1%		40%	
		F1-macro (†)	AUC (↑)	F1-macro (↑)	AUC (↑)
YelpChi	CARE-GNN	0.6151	0.7290	0.6943	0.8316
	PC-GNN	0.6335	0.7412	0.7202	0.8495
	BWGNN	0.6558	0.7764	0.7176	0.9026
	DRAG	0.6884	0.8279	0.7988	0.9233
	CARE-GNN	0.9024	0.9235	0.9025	0.9539

$$\alpha_i = \frac{\exp(\mathbf{a}^{(l)}\sigma(\mathbf{W}^{(l)}[\mathbf{h}_i^{(l)}||\mathbf{h}_j^{(l)}]))}{\sum_{v_{j'}\in\mathcal{N}_i}\exp(\mathbf{a}^{(l)}\sigma(\mathbf{W}^{(l)}[\mathbf{h}_i^{(l)}||\mathbf{h}_{j'}^{(l)}]))}$$

• By utilizing the dynamic attention mechanism, attention coefficients can vary depending on each target node.

Overview of DRAG

- Many real-world graphs include different types of relations.
 - Relation-aware approaches have shown superior performance over the fraud detection methods that ignore relations.
 - Under heterophily, it is helpful to explicitly consider the local and global neighbors to solve a node classification problem.

 DRAG computes node representations using relation-wise and layer-wise dynamic attention mechanisms.

Amazan	PC-GNN	0.8838	0.9031	0.8792	0.9524
Amazon	BWGNN	0.8024	0.8759	0.8791	0.9692
	DRAG	0.9028	0.9172	0.9130	0.9701

Qualitative Analysis and Ablation Studies

Distributions of the Attention Coefficients

• The attention coefficient values are **not concentrated** on specific values, and some of their distributions are **multimodal**.

Ablation Studies

• AUC scores on YelpChi using different percentages of labels

100/
<u> 40%</u>

Relation-attentive Aggregation

- DRAG decomposes the original graph by relations to learn a node representation per relation along with a self-transformation.
 - Consider the self-loop used in self-transformation as another relation.

• At each layer, DRAG aggregates the multiple node representations for each node with different learnable weights for the relations.

without relation types0.72000.7without layer aggregation0.71530.7	.9233
without layer aggregation 0.7153 0.	.8716
	.8775
with only a single layer 0.8214 0.	.9076

1%

Conclusion & Future Work

- Propose DRAG, a dynamic attention-based fraud detection method, performing relation-wise and layer-wise attentive aggregations.
- By dynamically adapting the attention coefficients for individual nodes, DRAG is especially effective in fraud detection on graphs with heterophily.
- Plan to extend DRAG to handle evolving graphs where new nodes appear and new edges are formed over time.

GitHub: https://github.com/bdi-lab/DRAG

Lab Homepage: https://bdi-lab.kaist.ac.kr