FinePrompt: Unveiling the Role of Finetuned Inductive Bias on **Compositional Reasoning in GPT-4**

You will be given a set of evidence

The sentences are prefixed with

documents, a multi-hop question ...

paragraph and sentence numbers.

There are three connection types:

1) "Question": ···

P2S5 (Inter: P4S2):

Q (Question: P4S2):

Answer: Clifton College

(c) Graph-Infused Prompt

 $\mathbf{X} = ([I | |S_k], g(x_i))$

2) "Intra": ···

3) "Inter": ···

Inter: P2S5):

The prefixes can connect sentences.

Nodes

P4S2 (Question: Q

* Work was done while working at KAIST † Corresponding author

Jeonghwan Kim*, Giwon Hong*, Sung-Hyon Myaeng, Joyce-Jiyoung Whang Contact: jk100@illinois.edu, g.hong@sms.ed.ac.uk, {myaeng, jjwhang}@kaist.ac.kr

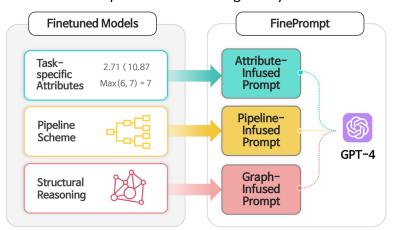
Motivation

Elicitive prompting such as Chain-of-Thought (Wei et al., 2022) and Self-Ask (Press et al., 2022) has improved LLMs' performance on compositional reasoning tasks. However, these require significant human effort to discover & validate.

Question: Can we mitigate this effort and improve performance by **leveraging the existing inductive biases** from finetuned models on compositional reasoning?

Overview

FinePrompt proposes a framework to transfer the central inductive biases of previous finetuned models to prompts to enhance the compositional reasoning ability of GPT-4.



Findings: Previously effective inductive biases leveraged by the finetuned models also help improve GPT-4's compositional reasoning ability when they are transferred to textual prompts

Approach: Construction of Inductive Bias-Infusing Prompts

You will be given a set of evidence

documents, a multi-hop question ...

Generate answers to the sub-questions

Question: Where did the producer of On

Sub-guestion 1: Who is the producer of

Generate the most plausible answer

Dangerous Ground study or work?

Decompose the given multi-hop

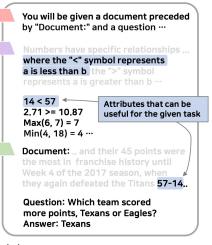
question into three types of ...

with guestion type ...

On Dangerous Ground?

Answer: John Houseman

Question Type: Bridging



(a) Attribute-Infused Prompt

$$\begin{aligned} \mathbf{X} &= ([I \mid\mid P_{attr} \mid\mid S_k], x_i) \\ S_k &= \begin{cases} \{s_1, \dots, s_k\} & if \ k > 0 \\ \emptyset & if \ k = 0 \end{cases} \end{aligned}$$

 $\mathbf{X} = ([I || S_k], x_i)$ $S_k = \{c(s_1), ..., c(s_k)\}$

Answer: Clifton College, London

(b) Pipeline-Infused Prompt

Given a language model $f_{\theta}(\mathbf{X}; \theta)$, the notations are defined as

X : Prompt input

I : Task-specific & Finetuned Instruction

 P_{attr} : Task-specific attribute (e.g., 3 < 11 in NumNet)

 S_k : k-shot in-context samples from the end tasks training dataset

Task-specific Instruction Finetuned Instruction

c: Function from few-shot samples to pipeline-infused format

g: Function that injects node-to-node information into text

Utilized Inductive Biases

- (a) Task-specific features that provide prerequisite knowledge
- (b) Breaking down a complex end task into a series of sub-tasks
- (c) Connectivity information among textual units

In-context Samples & Test Input

Result

		Zero-shot	
		Ans. EM	Ans. F1
Baselines	GPT-4	46.41 ±0.29	67.90 ± 0.32
	Self-Ask	$49.14\; {\pm}0.51$	62.82 ± 0.51
	CoT	$69.99 \; {\pm}0.45$	$81.16 \pm \hspace{-0.05cm} \pm \hspace{-0.05cm} 0.31$
Attribute-Infused Prompt	GenBERT	77.81 ±0.63	84.61 ±0.43
	NumNet	$61.79 \; {\pm}0.29$	$75.46 \pm \hspace{-0.07cm} \pm \hspace{-0.07cm} 0.37$
Graph-Infused Prompt	QDGAT	52.73 ±0.66	70.36 ± 0.42

On DROP (Dua et al., 2019), both the Attribute- and Graph-Infused Prompts outperform existing baselines

		Zero-shot	
		Ans. F1	Sup. F1
Baselines	GPT-4	62.41 ± 0.50	82.21 ±0.21
	Self-Ask	$26.63 \; {\pm} 0.57$	-
	CoT	56.40 ± 1.44	-
Pipeline-Infused Prompt	DecompRC	76.67 ±1.04	94.18 ±0.62
	QUARK	40.17 ± 0.74	53.73 ± 0.31
Graph-Infused Prompt	SAE	71.90 ± 0.64	80.00 ± 1.36

On MuSiQue (Trivedi et al., 2022), the Pipeline-Infused & Graph-infused Prompts exhibit enhanced performance

Takeaways

- As prompts, validated finetuned inductive biases also benefit GPT-4's compositional reasoning
- Adopting the finetuned model codes mitigate the effort of manual prompt construction