Hyperlink Classification via Structured Graph Embedding

G. Lee, S. Kang, and J. J. Whang*

ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) July 2019 (*corresponding author)

Real-World Web Graphs

- Hyperlinks are created for different reasons
 - Navigation links: navigate the main website
 - Suggestion links: suggest users to take a look at related information
 - Action links: invoke actions such as 'edit', 'share', or 'send an email'

- Hyperlink Classification Problem
 - Classify hyperlinks into three classes: navigation, suggestion, and action

Hyperlink Classification

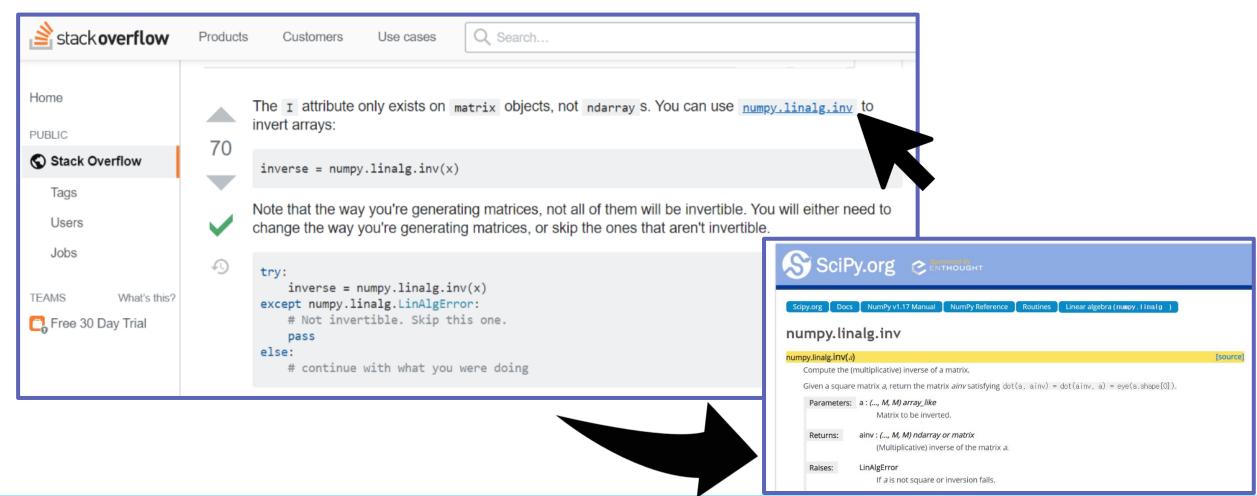
Navigation Links

Google	sigir 2019	پ ۹
Go to G	Q All ≡ News t Images ► Videos ♡ Maps t More	Settings Tools
	About 633,000 results (0.47 seconds)	
	sigir.org > sigir2019 💌	
	SIGIR 2019 SIGIR 2019 - acm sigir	
	The 42nd International ACM SIGIR Conference on Research and Developmer Retrieval will take place on July 21-25, 2019 in Paris.	nt in Information
	You've visited this page many times. Last visit: 7/29/19	
		Google
		Q

Ļ

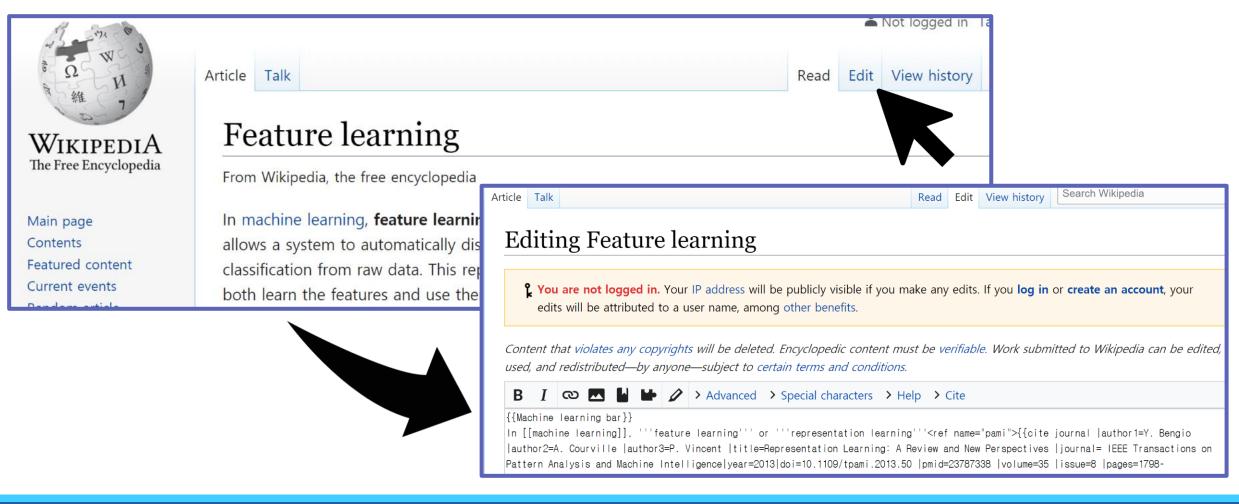
Hyperlink Classification

Suggestion Links



Hyperlink Classification

Action Links



Real-World Datasets

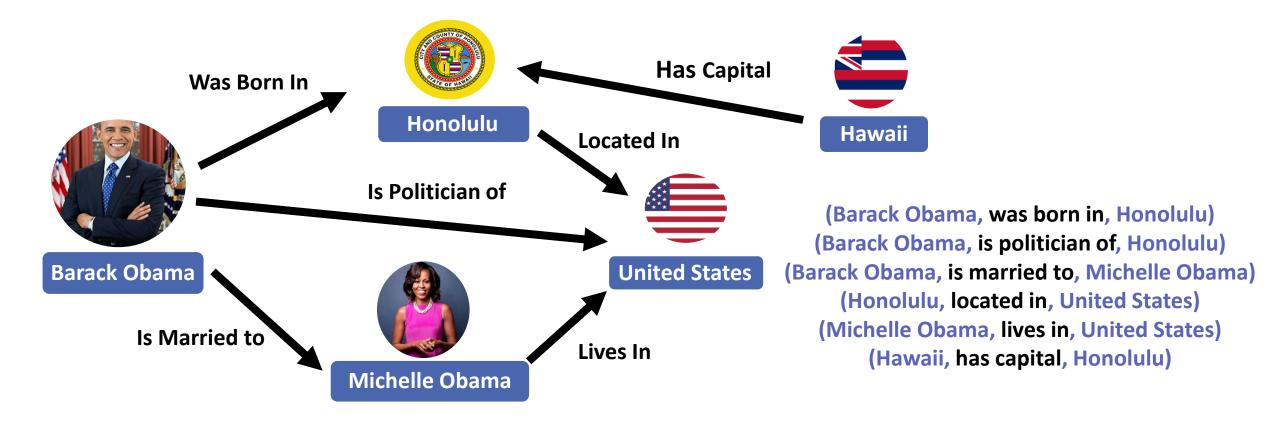
- Real-world web graphs
 - Crawling a set of web pages and hyperlinks starting from a page in Stack Overflow.
 - Conducting a biased random walk

	$ \mathcal{V} $	$ \mathcal{S} $	navigation	suggestion	action
web_437	404	437	268 (61.33%)	112 (25.63%)	57 (13.04%)
web_1442	332	1,442	1,284 (89.04%)	93 (6.45%)	65 (4.51%)
web_10000	2,202	10,000	9,892 (98.92%)	85 (0.85%)	23 (0.23 %)

web_437 and web_1442: some heuristics are applied to balance the class sizes. web_10000 reflects the underlying distribution of the class sizes – very unbalanced.

Knowledge Graphs

- Graphical Representation of Human Knowledge
 - Each fact is represented by a triplet (head entity, relation, tail entity)



Knowledge Graph Embedding

- Representation Learning Technique
 - Represents entities and relations in a feature space.
 - Given a set of golden triplets (S) and a set of corrupted triplets (S'), minimize

$$L = \sum_{(h,r,t)\in\mathcal{S}} \sum_{(h',r,t')\in\mathcal{S}'} [f(h,r,t) + \gamma - f(h',r,t')]_+$$

How to compute f(h, r, t) determines different embedding models.

Knowledge Graph Embedding

- Knowledge Graph Embedding Models
 - TransE: Translating Embeddings for Modeling Multi-relational Data
 - TransH: Knowledge Graph Embedding by Translating on Hyperplanes
 - TransR: Learning Entity and Relation Embeddings for Knowledge Graph Completion

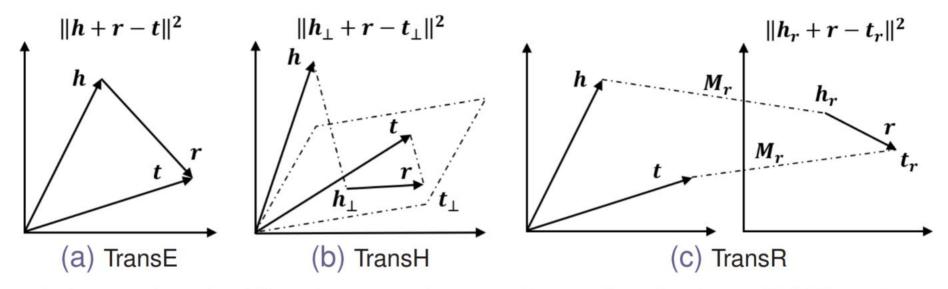
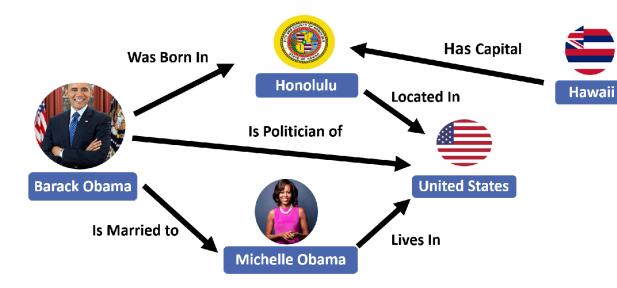


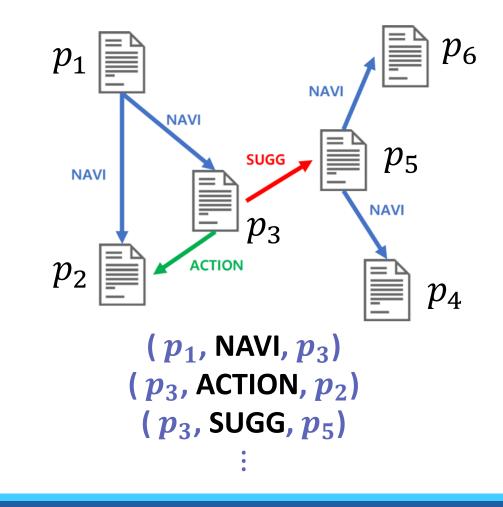
Image from "Knowledge graph embedding: A survey of approaches and applications." TKDE 2017.

Hyperlink Classification Model

Interpret a Web Graph as a Knowledge Graph



(Barack Obama, was born in, Honolulu) (Honolulu, located in, United States) (Michelle Obama, lives in, United States)



Hyperlink Classification Model

- Model Specification and Training
 - A web graph G = (\mathcal{V}, \mathcal{E}) where $\mathcal{V} = \{ p_1, p_2, \cdots, p_n \}, \mathcal{E} = \{ (p_i, p_j) : p_i \in \mathcal{V}, p_j \in \mathcal{V} \}$
 - Each hyperlink has one of the three relation labels *R* = {n, s, a}

$$L = \sum_{(p_i, r, p_j) \in \mathcal{S}} [f(p_i, r, p_j) + \gamma - f(c(p_i, r, p_j))]_+$$

where $c(p_i, r, p_j)$ is defined by

$$c(p_i, r, p_j) = \begin{cases} \text{prob. } \alpha/2 : & (p_i, r, q), q \in \mathcal{V} \setminus \{p_j\}, (p_i, r, q) \notin S \\ \text{prob. } \alpha/2 : & (q, r, p_j), q \in \mathcal{V} \setminus \{p_i\}, (q, r, p_j) \notin S \\ \text{prob. } (1 - \alpha) : & (p_i, r', p_j), r' \in \mathcal{R} \setminus \{r\} \end{cases}$$

 α controls the chance to corrupt entities (0 < $\alpha \leq$ 1)

- Prediction
 - For a directed edge (p_i, p_j) in a test set, the **relation label** is predicted by

$$r^* = \underset{r \in R}{\operatorname{argmin}} f(p_i, r, p_j)$$

• For TransH embedding model, $f(p_i, r, p_j)$ is computed by

$$f(p_i, r, p_j) = \|(\boldsymbol{p}_i - \boldsymbol{w}_r^T \boldsymbol{p}_i \boldsymbol{w}_r) + \boldsymbol{r} - (\boldsymbol{p}_j - \boldsymbol{w}_r^T \boldsymbol{p}_j \boldsymbol{w}_r)\|_2^2$$

 p_i and p_j : embedding vectors of the pages r: embedding vector for the relation w_r : norm vector of the relation-specific hyperplane

F1 scores (%) of our model with different α values and the original TransE, TransH, and TransR.

		TransE	TransH	TransR
	Our model, $\alpha = 0.3$	34.29	60.25	57.99
wab 127	Our model, $\alpha = 0.5$	34.39	58.87	57.32
web_437	Our model, $\alpha = 0.7$	33.88	58.91	59.83
	The original model	36.22	54.04	53.22
	Our model, $\alpha = 0.3$	23.39	53.42	50.04
wab 1112	Our model, $\alpha = 0.5$	24.86	55.16	46.18
web_1442	Our model, $\alpha = 0.7$	21.18	52.70	45.12
	The original model	20.05	29.94	10.35
	Our model, $\alpha = 0.3$	20.68	76.00	53.86
	Our model, $\alpha = 0.5$	17.98	74.64	46.99
web_10000	Our model, $\alpha = 0.7$	19.50	72.94	44.11
	The original model	15.31	25.35	2.08

- → Our model significantly outperforms the original knowledge graph embedding methods.
- → Creating corrupted triplets by relation perturbation
 plays a critical role in the hyperlink
 classification problem.

• F1 score (%) of each class and the average F1 score

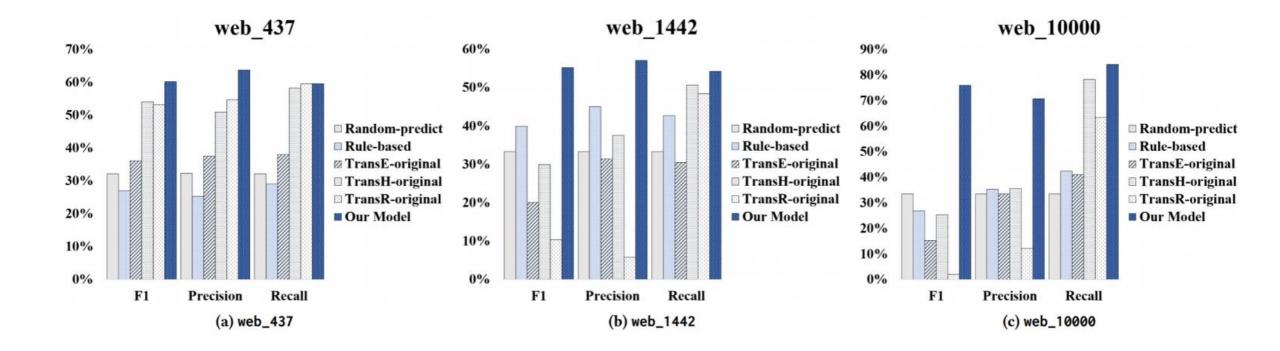
		navigation	suggestion	action	Average
	Random-predict	59.75	25.81	11.07	32.21
	Rule-based	60.20	20.96	0.00	27.05
wab 127	TransE-original	55.78	31.96	20.93	36.22
web_437	TransH-original	70.80	52.75	38.56	54.04
	TransR-original	67.87	52.86	38.94	53.22
	Our Model	77.04	57.05	46.64	60.25
	Random-predict	89.13	5.18	5.65	33.32
	Rule-based	72.98	10.20	36.67	39.95
und 1440	TransE-original	42.54	8.57	9.05	20.05
web_1442	TransH-original	54.80	13.57	21.45	29.94
	TransR-original	0.00	12.97	18.09	10.35
	Our Model	93.48	22.88	49.12	55.16
	Random-predict	98.91	1.60	0.00	33.50
	Rule-based	68.81	1.74	9.92	26.82
10000	TransE-original	43.25	2.06	0.61	15.31
web_10000	TransH-original	63.01	12.02	1.03	25.35
	TransR-original	0.00	5.61	0.61	2.08
	Our Model	99.66	83.22	45.12	76.00

→ Random-predict: random prediction while preserving the number of hyperlinks in each class.

- → Rule-based:
- navigation: within-domain hyperlinks
- action: 'edit', 'share', 'email', or 'vote'
- suggestion: the rest

\rightarrow Our model achieves the highest F1 scores.

The average F1, average precision, and average recall



Performance on the original web graphs and the randomly shuffled graphs

		navigation	suggestion	action
web_437	Original Graph	77.04	57.05	46.64
	Randomly Shuffled Graph	58.60	25.36	13.79
	Original Graph	93.48	22.88	49.12
web_1442	Randomly Shuffled Graph	86.08	6.19	5.68
	Original Graph	99.66	83.22	45.12
web_10000	Randomly Shuffled Graph	98.43	1.28	0.61

Randomly shuffled graph: the relation labels are randomly shuffled. Classification performance significantly degrades on the randomly shuffled graphs. Real-world web graphs have characterized structures in terms of forming each relation type. → Enables us to predict the relation labels via structured graph embedding.

Summary

- Hyperlink Classification in Web Search
 - Classify hyperlinks into three classes: navigation, suggestion, and action
- Approach the problem from a structured graph embedding perspective
 - Interpret a web graph as a knowledge graph
 - Modify knowledge graph embedding techniques
- Relation perturbation in negative sampling enables us to significantly improve performance in classifying hyperlinks on web graphs.

More Information: <u>http://bigdata.cs.skku.edu/</u>