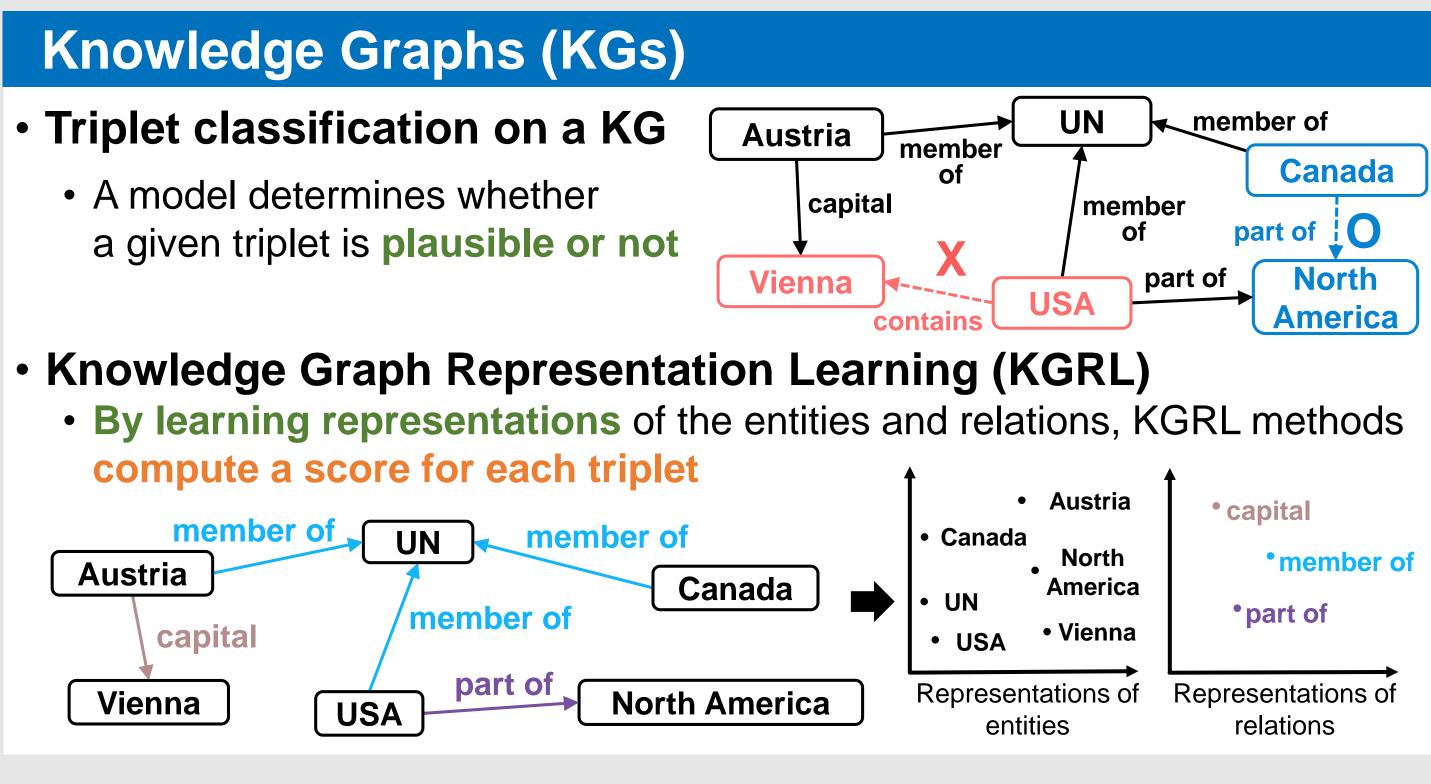
PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

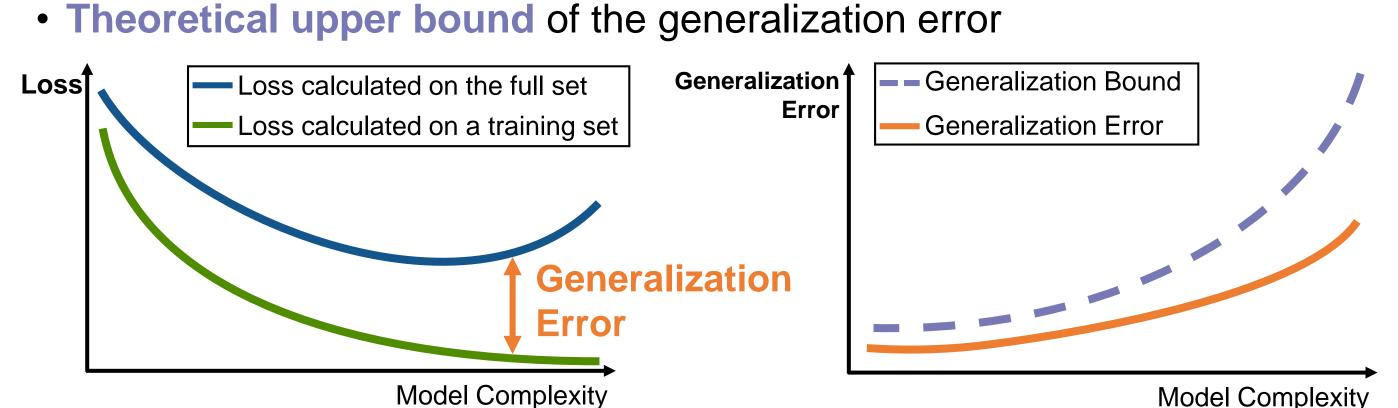
Main Contributions

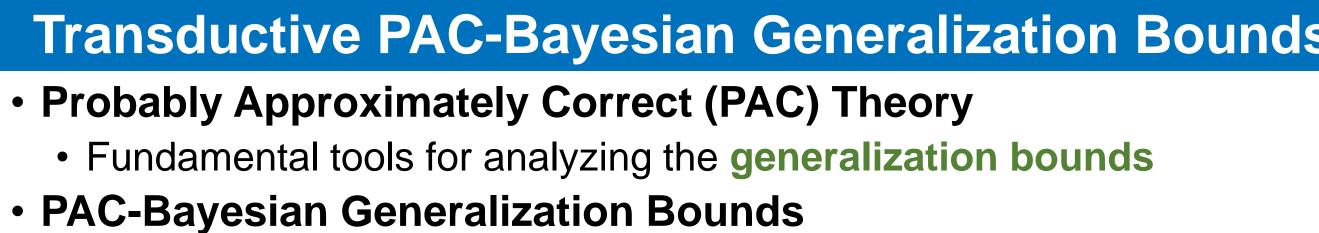
- **ReED framework** representing at least 15 different KGRL methods • **RAMP encoder** in ReED is a comprehensive neural encoder for KGRL that can express models such as CompGCN and R-GCN
 - Formulate two types of triplet classification decoders in ReED
- Prove the generalization bounds for the ReED framework
 - The first study about PAC-Bayesian generalization bounds for KGRL
 - Analyze theoretical findings from a practical model design perspective
- Empirically show that the critical factors in generalization bounds can explain actual generalization errors on three real-world KGs



Generalization Bound

- Generalization Error
- Difference between the losses computed on the full set and a training set
- Generalization Bound





- Based on the difference between the prior and posterior distribution
- Transductive PAC-Bayesian Generalization Bounds
 - Training triplets are sampled without replacement from the finite full set

* Corresponding Author (jjwhang@kaist.ac.kr)

Jaejun Lee, Minsung Hwang, and Joyce Jiyoung Whang* School of Computing, KAIST The 41st International Conference on Machine Learning (ICML 2024)

Relation-aware Encoder-Decoder Framework (ReED)

 Relation-Aware Message Passing Encoder (RAMP Encoder) • Aggregating representations of the neighboring entities and relations

$$\begin{split} \boldsymbol{M}_{r}^{(l)}[v,:] &= [\boldsymbol{H}^{(l-1)}[v,:] \quad \boldsymbol{R}^{(l-1)}[r,:]] \quad v \in \mathcal{V}, r \in \mathcal{V$$

- Triplet Classification Decoder
- Using the entity and relation representations, compute scores of triplets
- Translational Distance Decoder (TD decoder)
- **Distance** between h and t after a relation-specific translation is carried out

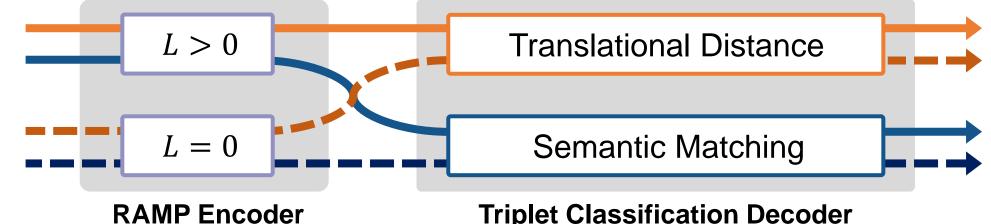
$$f_{\mathbf{w}}(h,r,t)[j] = -\left\| \boldsymbol{H}^{(L)}[h,:] \overline{\boldsymbol{W}}_{r}^{\langle j \rangle} + \boldsymbol{R}^{(L)}[r,:] \overline{\boldsymbol{U}}_{r}^{\langle j \rangle} - \boldsymbol{H}^{(L)}[t,:] \boldsymbol{V}_{r}^{\langle j \rangle} \right\|_{2}$$

• Semantic Matching Decoder (SM decoder) • **Similarity** between the individual components of the triplet

$$f_{\mathbf{w}}(h,r,t)[j] = \boldsymbol{H}^{(L)}[h,:] \overline{\boldsymbol{U}}_{r}^{\langle j \rangle} (\boldsymbol{h}_{r})$$

Instantiations of ReED

• ReED can express various KGRL methods using different combinations of the RAMP encoder and the triplet classification decoder



Triplet Classification Decoder

Empirical and Expected Losses of a Triplet Classifier

• Empirical Loss of Triplet Classifier f_w : Measured on a training triplet set $\hat{\mathcal{E}}$

$$f(f_{\mathbf{w}}) = \frac{1}{|\hat{\mathcal{E}}|} \sum_{(\mathbf{x}, \mathbf{y}) = \hat{\mathbf{n}}} \mathbf{1} [f_{\mathbf{w}}(h, r, t)]$$

' '(*h,r,t*)∈Ê • **Expected Loss** of Triplet Classifier f_w : Measured on the full triplet set \mathcal{E}

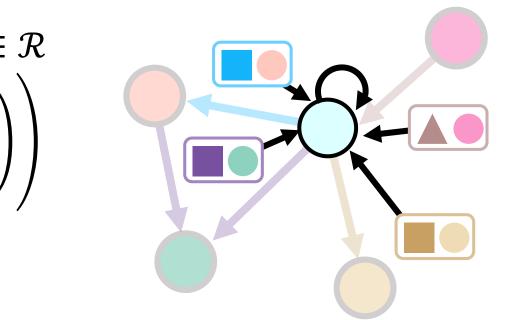
$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) = \frac{1}{|\mathcal{E}|} \sum_{(h,r,t)\in\mathcal{E}} \mathbf{1}[f_{\mathbf{w}}(h,r,t)[y_{hrt}]]$$

nplexity	Genera	alization B	ou	nds	for ReED
S	Distri	or & Posterior butions on the othesis Space		cor	oll two-step recu nsidering interac t en entities and r
	Assume the Gaussian distribution with the same standard devi				• Perturbation Βου of ReED
ons Ill set	General	tive PAC-Bayesia ization Bounds for ninistic Classifie	r -		Calculate the KL-divergence

 $\mathcal{L}_{\gamma,\hat{\mathcal{E}}}$

GitHub: https://github.com/bdi-lab/ReED

Model Com



 $\left(\boldsymbol{H}^{(L)}[t,:] \right)^{\prime}$

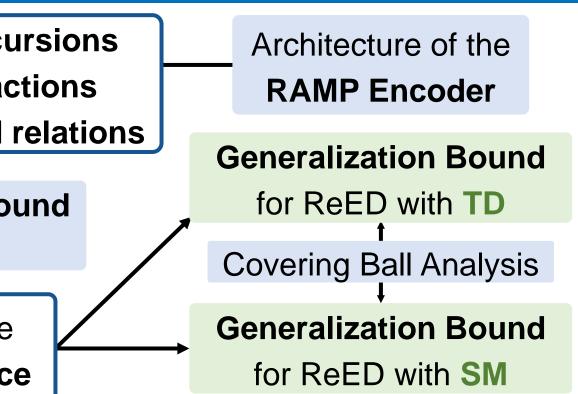
CompGCN + TransE, ... TransH, RotatE, ...

R-GCN + DistMult, ... DistMult, ANALOGY, ...

 $t)[y_{hrt}] \le \gamma + f_{\mathbf{w}}(h, r, t)[1 - y_{hrt}]$

 $\leq f_{\mathbf{w}}(h,r,t)[1-y_{hrt}]$

D: Proof Sketch



PAC-Bayesian Generalization Bounds for ReED

The generalization bounds for ReED with the TD decoder and SM decoder

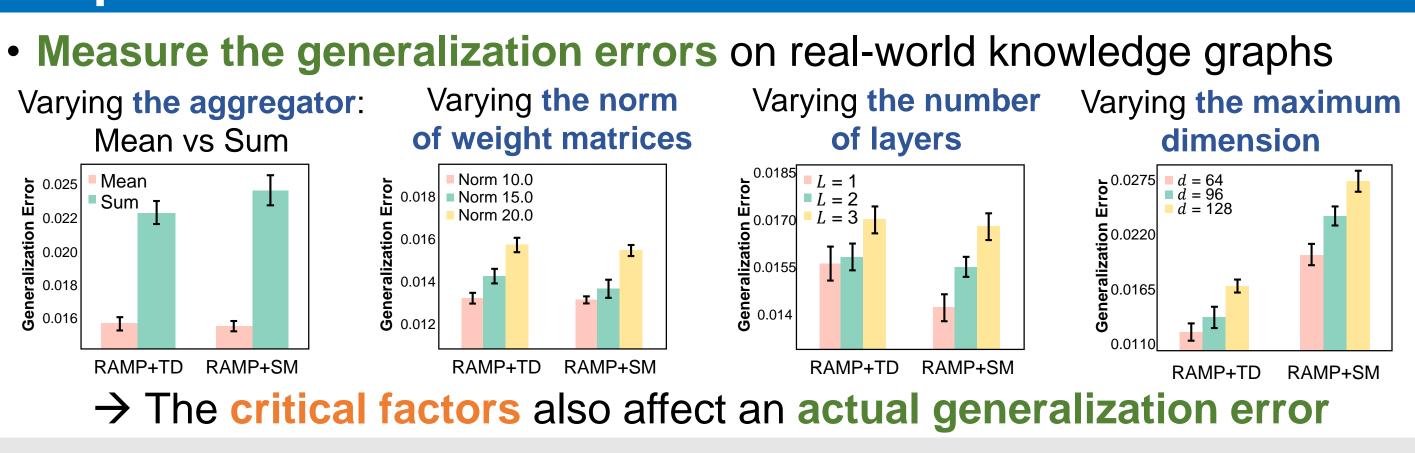
Theorem 4.4 & 4.5 For any $L \ge 0$, let $f_w: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with L-layers and the triplet classification decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any w, we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \begin{cases} \mathcal{O}\left(\sqrt{\left(\frac{1}{|\hat{\mathcal{E}}|} - \frac{1}{|\hat{\mathcal{E}}|}\right)\right) \\ \mathcal{O}\left(\sqrt{\left(\frac{1}{|\hat{\mathcal{E}}|} - \frac{1}{|\hat{\mathcal{E}}|}\right)\right) \end{cases}$$

Generalization Bounds for ReED: a Simplified Form

• Leaving model-dependent terms and regarding the rest as a constant

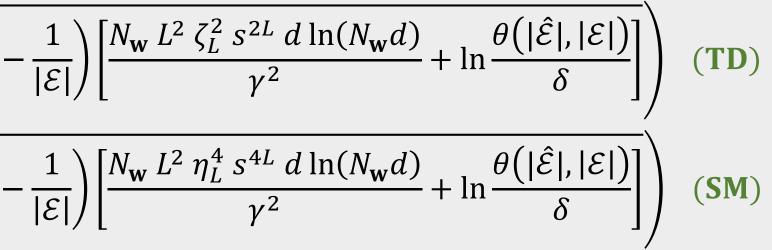
- **Practical implications** that can guide the desirable designs of KGRL
 - k_r : Maximum of the infinity norms for all possible $S_r^{(l)}$
 - A mean aggregator can be a better option than a sum aggregator
 - N_{w} : Total number of learnable matrices (= $\mathcal{O}(|\mathcal{R}|L)$) • Parameter-sharing strategies & basis/block decomposition ideas
 - s: Maximum Frobenius norm of the learnable matrices
 - Weight normalization & Normalization of entity representations



Conclusion

Lab Homepage: https://bdi-lab.kaist.ac.kr

BDILab KAIST



where $\theta(|\hat{\mathcal{E}}|,|\mathcal{E}|) = 3 \left| |\hat{\mathcal{E}}| \left(1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}\right) \ln |\hat{\mathcal{E}}|, \zeta_L = 2\tau^L \|X_{\text{ent}}\|_2 + 2\kappa \|X_{\text{ent}}\|_2 \left(\sum_{i=0}^{L-1} \tau^i\right) + \|X_{\text{rel}}\|_2, \eta_L = 1$ $\tau^L \|X_{ent}\|_2 + \kappa \|X_{rel}\|_2 (\sum_{i=0}^{L-1} \tau^i), \tau = C_{\phi} + \kappa, \kappa = C_{\phi} C_{\rho} C_{\psi} \sum_{r \in \mathcal{R}} k_r, N_w$ is the total number of learnable matrices, d is the maximum dimension, and s is the maximum Frobenius norm of the learnable matrices

- $\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \begin{cases} \mathcal{O}\left(L(\sum_{r\in\mathcal{R}}k_{r})^{L}s^{L}\sqrt{N_{\mathbf{w}}\ln N_{\mathbf{w}}}\right) & (\mathbf{TD}) \\ \mathcal{O}\left(L(\sum_{r\in\mathcal{R}}k_{r})^{2L}s^{2L}\sqrt{N_{\mathbf{w}}\ln N_{\mathbf{w}}}\right) & (\mathbf{SM}) \end{cases}$

• A novel **ReED framework** expressing at least 15 KGRL methods The first PAC-Bayesian generalization bounds for ReED with two different types of decoders: **TD decoder** and **SM decoder** Provide theoretical grounds for commonly used tricks in KGRL • Empirically show the relationship between the critical factors in the theoretical bounds and the actual generalization errors