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• ReED framework representing at least 15 different KGRL methods

• RAMP encoder in ReED is a comprehensive neural encoder for KGRL 

that can express models such as CompGCN and R-GCN

• Formulate two types of triplet classification decoders in ReED

• Prove the generalization bounds for the ReED framework

• The first study about PAC-Bayesian generalization bounds for KGRL

• Analyze theoretical findings from a practical model design perspective

• Empirically show that the critical factors in generalization bounds can 

explain actual generalization errors on three real-world KGs

Main Contributions

• Empirical Loss of Triplet Classifier 𝑓𝐰 : Measured on a training triplet set መℰ
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• Expected Loss of Triplet Classifier 𝑓𝐰 : Measured on the full triplet set ℰ
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Empirical and Expected Losses of a Triplet Classifier

• A novel ReED framework expressing at least 15 KGRL methods

• The first PAC-Bayesian generalization bounds for ReED with two 

different types of decoders: TD decoder and SM decoder

• Provide theoretical grounds for commonly used tricks in KGRL

• Empirically show the relationship between the critical factors in 

the theoretical bounds and the actual generalization errors

Conclusion
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• Generalization Error
• Difference between the losses computed on the full set and a training set

• Generalization Bound
• Theoretical upper bound of the generalization error

Generalization Bound
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• Measure the generalization errors on real-world knowledge graphs

Experimental Results
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Varying the aggregator:

Mean vs Sum
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→ The critical factors also affect an actual generalization error

Relation-aware Encoder-Decoder Framework (ReED)

• Relation-Aware Message Passing Encoder (RAMP Encoder)

• Aggregating representations of the neighboring entities and relations

PAC-Bayesian Generalization Bounds for ReED

Theorem 4.4 & 4.5 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 

combination of the RAMP encoder with 𝐿-layers and the triplet classification decoder. Let 𝑘𝑟 be the 

maximum of the infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with 

probability at least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 
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ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜂𝐿 =

𝜏𝐿 𝑿ent 2 + 𝜅 𝑿rel 2 σ𝑖=0
𝐿−1 𝜏𝑖 , 𝜏 = 𝐶𝜙 + 𝜅, 𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓 σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable 

matrices, 𝑑 is the maximum dimension, and 𝑠 is the maximum Frobenius norm of the learnable matrices

• The generalization bounds for ReED with the TD decoder and SM decoder

• Probably Approximately Correct (PAC) Theory

• Fundamental tools for analyzing the generalization bounds

• PAC-Bayesian Generalization Bounds

• Based on the difference between the prior and posterior distributions

• Transductive PAC-Bayesian Generalization Bounds

• Training triplets are sampled without replacement from the finite full set

Transductive PAC-Bayesian Generalization Bounds

• ReED can express various KGRL methods using different combinations 

of the RAMP encoder and the triplet classification decoder

Instantiations of ReED

RAMP Encoder Triplet Classification Decoder

CompGCN + TransE, …

TransH, RotatE, …

R-GCN + DistMult, …

DistMult, ANALOGY, …

𝐿 > 0

𝐿 = 0

Translational Distance

Semantic Matching

Knowledge Graphs (KGs)
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• Knowledge Graph Representation Learning (KGRL)
• By learning representations of the entities and relations, KGRL methods 

compute a score for each triplet

• Leaving model-dependent terms and regarding the rest as a constant

Generalization Bounds for ReED: a Simplified Form
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Generalization Bounds for ReED: Proof Sketch

Transductive PAC-Bayesian

Generalization Bounds for 

a Deterministic Classifier

Prior & Posterior 

Distributions on the 

Hypothesis Space

Architecture of the

RAMP Encoder

Perturbation Bound 

of ReED

Unroll two-step recursions

considering interactions

between entities and relations

Generalization Bound

for ReED with SM

Assume the Gaussian distributions 

with the same standard deviation
Covering Ball Analysis

Calculate the 

KL-divergence

• Practical implications that can guide the desirable designs of KGRL

• 𝑘𝑟: Maximum of the infinity norms for all possible 𝑺𝑟
𝑙

• A mean aggregator can be a better option than a sum aggregator

• 𝑁𝐰: Total number of learnable matrices (= 𝒪 |ℛ|𝐿 )

• Parameter-sharing strategies & basis/block decomposition ideas

• 𝑠: Maximum Frobenius norm of the learnable matrices

• Weight normalization & Normalization of entity representations

X

capital

North 

America

Austria
member ofUN

Canada

part of

Vienna
USA

part of

contains

O

Austria

Vienna

North

America

Representations of 

entities

UN

USA

Canada

• Triplet classification on a KG

• A model determines whether 

a given triplet is plausible or not
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• Triplet Classification Decoder

• Using the entity and relation representations, compute scores of triplets

• Translational Distance Decoder (TD decoder)

• Distance between ℎ and 𝑡 after a relation-specific translation is carried out

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = − 𝑯 𝐿 ℎ, : 𝑾𝑟
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• Semantic Matching Decoder (SM decoder)

• Similarity between the individual components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 𝐿 ℎ, : ഥ𝑼𝑟
𝑗
𝑯 𝐿 𝑡, :

⊤

Generalization Bound

for ReED with TD


