PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

Jaejun Lee, Minsung Hwang, and Joyce Jiyoung Whang* School of Computing, KAIST * Corresponding Author

The 41st International Conference on Machine Learning (ICML 2024)

01 Knowledge Graphs

• Represent human knowledge using triplets

01 Triplet Classification on Knowledge Graphs

01 Knowledge Graph Representation Learning

• Learn representations of the entities and relations in a knowledge graph

Representations of Entities and Relations

Knowledge Graph

01 Generalization Bound

- Generalization Error
 - Difference between the losses calculated on the full set \mathcal{E} and the training set $\hat{\mathcal{E}}$
- Generalization Bound
 - Theoretical upper bound of the generalization error

01 PAC-Bayesian Generalization Bounds

- Probably Approximately Correct (PAC) theory
 - Fundamental tools for analyzing the generalization bounds
- PAC-Bayesian approach
 - Measure generalization bounds based on the difference between the **prior** distribution and the **posterior** distribution

01 Transductive PAC-Bayesian Generalization Bounds

Original PAC-Bayesian framework

Transductive PAC-Bayesian framework

02 Relation-aware Encoder-Decoder Framework

- Consists of the RAMP encoder and a triplet classification decoder
 - RAMP encoder **learns the representations of entities** by aggregating representations of the neighboring entities and relations
 - Triplet classification decoder uses the representations to **compute the scores of each triplet**
 - Assigns two different scores for each triplet, stored in $f_w(h, r, t)[0]$ and $f_w(h, r, t)[1]$

- Project the neighbor entities and relations' representations using relation-specific projection matrices
 - Different projection matrices for entities and relations

 $\boldsymbol{S}^{(l)}_{l}$

part of

(1)

$$M_{r}^{(l)}[v,:] = [H^{(l-1)}[v,:] \quad R^{(l-1)}[r,:]] \quad v \in \mathcal{V}, r \in \mathcal{R}$$
$$H^{(l)} = \phi \left(H^{(l-1)}W_{0}^{(l)} + \rho \left(\sum_{r \in \mathcal{R}} S_{r}^{(l)}\psi \left(M_{r}^{(l)} \right) \begin{bmatrix} W_{r}^{(l)} \\ U_{r}^{(l)} \end{bmatrix} \right) \right), \quad R^{(l)} = R^{(l-1)}U_{0}^{(l)}$$

 $S_{\text{member of}}^{(l)}$

S^(l)

official language

 $\boldsymbol{S}_{\text{country}}^{(l)}$

- Aggregate the neighbor representations to update the entity's representation
 - The diffusion matrix also represents the type of aggregator (e.g., sum, mean)

$$\boldsymbol{M}_{r}^{(l)}[\boldsymbol{v},:] = [\boldsymbol{H}^{(l-1)}[\boldsymbol{v},:] \quad \boldsymbol{R}^{(l-1)}[r,:]] \quad \boldsymbol{v} \in \mathcal{V}, r \in \mathcal{R}$$

$$\boldsymbol{H}^{(l)} = \phi \left(\boldsymbol{H}^{(l-1)} \boldsymbol{W}_{0}^{(l)} + \rho \left(\sum_{r \in \mathcal{R}} \boldsymbol{S}_{r}^{(l)} \boldsymbol{\psi} \left(\boldsymbol{M}_{r}^{(l)} \right) \begin{bmatrix} \boldsymbol{W}_{r}^{(l)} \\ \boldsymbol{U}_{r}^{(l)} \end{bmatrix} \right) \right), \qquad \boldsymbol{R}^{(l)} = \boldsymbol{R}^{(l-1)} \boldsymbol{U}_{0}^{(l)}$$

- Update a relation's representation with a projection matrix
 - Same projection matrix for all relations

02 Special Cases of RAMP Encoder

 RAMP encoder represents the aggregation process in a general form that can subsume many existing KGRL encoders

$$\begin{split} \boldsymbol{M}_{r}^{(l)}[v,:] &= \left[\boldsymbol{H}^{(l-1)}[v,:] \quad \boldsymbol{R}^{(l-1)}[r,:] \right] \quad v \in \mathcal{V}, r \in \mathcal{R} \\ \boldsymbol{H}^{(l)} &= \phi \left(\boldsymbol{H}^{(l-1)} \boldsymbol{W}_{0}^{(l)} + \rho \left(\sum_{r \in \mathcal{R}} \boldsymbol{S}_{r}^{(l)} \psi \left(\boldsymbol{M}_{r}^{(l)} \right) \begin{bmatrix} \boldsymbol{W}_{r}^{(l)} \\ \boldsymbol{U}_{r}^{(l)} \end{bmatrix} \right) \right), \qquad \boldsymbol{R}^{(l)} &= \boldsymbol{R}^{(l-1)} \boldsymbol{U}_{0}^{(l)} \end{split}$$

02 Special Cases of RAMP Encoder

- R-GCN (ESWC 2018)
 - An adjacency matrix A_r normalized by a **problem-specific constant** $c_{v,r}$ is used as the relation-specific graph diffusion matrix

$$M_{r}^{(l)}[v,:] = [H^{(l-1)}[v,:] \qquad] \quad v \in \mathcal{V}, r \in \mathcal{R}$$
$$H^{(l)} = \operatorname{ReLU}\left(H^{(l-1)}W_{0}^{(l)} + \left(\sum_{r \in \mathcal{R}} S_{r}^{(l)} \left(M_{r}^{(l)}\right) \begin{bmatrix} W_{r}^{(l)} \\ \end{bmatrix} \right)\right), \qquad S_{r}^{(l)}[v,:] = \frac{1}{c_{v,r}}A_{r}[v,:]$$

O2 Special Cases of RAMP Encoder

- WGCN (AAAI 2019)
 - An adjacency matrix A_r is used as the relation-specific graph diffusion matrix
 - Relation-specific projection matrices share some parameters

$$\boldsymbol{M}_{r}^{(l)}[\boldsymbol{v},:] = [\boldsymbol{H}^{(l-1)}[\boldsymbol{v},:] \qquad] \quad \boldsymbol{v} \in \mathcal{V}, r \in \mathcal{R}$$
$$\boldsymbol{H}^{(l)} = \operatorname{Tanh}\left(\boldsymbol{H}^{(l-1)}\boldsymbol{W}_{0}^{(l)} + \left(\sum_{r \in \mathcal{R}} \boldsymbol{S}_{r}^{(l)} \left(\boldsymbol{M}_{r}^{(l)}\right) \begin{bmatrix} \boldsymbol{\alpha}_{r}^{(l)}\boldsymbol{W}_{0}^{(l)} \end{bmatrix} \right) \right), \qquad \boldsymbol{S}_{r}^{(l)} = \boldsymbol{A}_{r}$$

O2 Special Cases of RAMP Encoder

- CompGCN (ICLR 2020)
 - An adjacency matrix A_r is used as the relation-specific graph diffusion matrix
 - Relations in the same category share the relation-specific projection matrix

$$M_{r}^{(l)}[v,:] = [H^{(l-1)}[v,:] \quad R^{(l-1)}[r,:]] \quad v \in \mathcal{V}, r \in \mathcal{R}$$
$$H^{(l)} = \operatorname{Tanh}\left(H^{(l-1)}W_{0}^{(l)} + \left(\sum_{r \in \mathcal{R}} S_{r}^{(l)} \quad \left(M_{r}^{(l)}\right) \begin{bmatrix} W_{\lambda(r)}^{(l)} \\ -W_{\lambda(r)}^{(l)} \end{bmatrix} \right)\right), R^{(l)} = R^{(l-1)}U_{0}^{(l)}, S_{r}^{(l)} = A_{r}$$

02 Special Cases of RAMP Encoder: Summary

• RAMP encoder can represent R-GCN (ESWC 2018), WGCN (AAAI 2019), and CompGCN (ICLR 2020) by appropriately setting the **functions** and **matrices**

		ϕ	$ ho$, ψ	$\boldsymbol{W}_r^{(l)}$	$\boldsymbol{U}_r^{(l)}$	$\boldsymbol{S}_r^{(l)}[v,:]$
R-GCN		ReLU	identity	$\pmb{W}_r^{(l)}$	0	$\frac{1}{c_{v,r}}A_r[v,:]$
WGCN		Tanh	identity	$\alpha_r^{(l)} \boldsymbol{W}_0^{(l)}$	0	$A_r[v,:]$
CompGCN	Subtraction	Tanh	identity	$m{W}_{\lambda(r)}^{(l)}$	$- W^{(l)}_{\lambda(r)}$	$A_r[v,:]$
	Multiplication	Tanh	identity	diag $(\mathbf{R}^{(l-1)}[r,:])\mathbf{W}_{\lambda(r)}^{(l)}$	0	$A_r[v,:]$
	Circular- correlation	Tanh	identity	$oldsymbol{\mathcal{C}}_{r}^{(l-1)}oldsymbol{W}_{\lambda(r)}^{(l)}$	0	$A_r[v,:]$

02 Translational Distance Decoder

• The score of (*h*, *r*, *t*) is computed by the distance between *h* and *t* after **relation-specific projections** and a **relation-specific translation**

$$f_{\mathbf{w}}(h,r,t)[j] = -\left\| \boldsymbol{H}^{(L)}[h,:] \overline{\boldsymbol{W}}_{r}^{(j)} + \boldsymbol{R}^{(L)}[r,:] \overline{\boldsymbol{U}}_{r}^{(j)} - \boldsymbol{H}^{(L)}[t,:] \boldsymbol{V}_{r}^{(j)} \right\|_{2}$$

Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Translational Distance Decoder: TransE

• The score of (*h*, *r*, *t*) is computed by the distance between *h* and *t* after a **relation-specific translation**

$$f_{\mathbf{w}}(h,r,t)[j] = -\left\| \boldsymbol{H}^{(0)}[h,:]\boldsymbol{T}_{\text{ent}}^{(j)} + \boldsymbol{R}^{(0)}[r,:]\boldsymbol{T}_{\text{rel}}^{(j)} - \boldsymbol{H}^{(0)}[t,:]\boldsymbol{T}_{\text{ent}}^{(j)} \right\|_{2}$$

Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Translational Distance Decoder: RotatE

• The score of (*h*, *r*, *t*) is computed by the distance between *h* and *t* after a **relation-specific rotation of** *h*

$$f_{w}(h,r,t)[j] = - \left\| H^{(0)}[h,:]T_{ent}^{(j)} \left[\begin{array}{c} P_{r}^{(j)} & Q_{r}^{(j)} \\ -Q_{r}^{(j)} & P_{r}^{(j)} \end{array} \right] - H^{(0)}[t,:]T_{ent}^{(j)} \right\|_{2}$$
Translations of head entities
$$\begin{array}{c} \text{USA} \bullet & \bullet \\ \bullet \text{British} & P_{r}^{(j)} & Q_{r}^{(j)} \\ -Q_{r}^{(j)} & P_{r}^{(j)} \end{array} \right] \xrightarrow{\bullet \text{USA}} \bullet & \bullet \text{British} \\ \hline \bullet \text{Columbia} & \bullet \text{USA} \end{array}$$

$$\begin{array}{c} \bullet \text{British} & \bullet \text{Columbia} & \bullet \text{USA} \\ \bullet \text{Columbia} & \bullet \text{USA} \end{array}$$

$$\begin{array}{c} \bullet \text{British} & \bullet \text{Columbia} & \bullet \text{USA} \\ \hline \bullet \text{Columbia} & \bullet \text{USA} \end{array}$$

$$\begin{array}{c} \bullet \text{British} & \bullet \text{Columbia} & \bullet \text{USA} \\ \hline \bullet \text{Columbia} & \bullet \text{USA} \end{array}$$

Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Translational Distance Decoder: Summary

• The score of (*h*, *r*, *t*) is computed by the distance between *h* and *t* after **relation-specific projections** and a **relation-specific translation**

$$f_{\mathbf{w}}(h,r,t)[j] = -\left\| \boldsymbol{H}^{(0)}[h,:] \overline{\boldsymbol{W}}_{r}^{\langle j \rangle} + \boldsymbol{R}^{(0)}[r,:] \overline{\boldsymbol{U}}_{r}^{\langle j \rangle} - \boldsymbol{H}^{(0)}[t,:] \boldsymbol{V}_{r}^{\langle j \rangle} \right\|_{2}$$

	$\overline{\pmb{W}}_r^{\langle j angle}$	$\overline{oldsymbol{U}}_r^{\langle j angle}$	$V_r^{\langle j angle}$
TransE (NeurIPS 2013)	$m{T}_{ m ent}^{\langle j angle}$	$m{T}_{ m rel}^{\langle j angle}$	$T_{ m ent}^{\langle j angle}$
TransH (AAAI 2014)	$\boldsymbol{T}_{\mathrm{ent}}^{\langle j \rangle}(\boldsymbol{I} - \mathbf{f}_r^{\langle j \rangle^{T}} \mathbf{f}_r^{\langle j \rangle})$	$m{T}_{ m rel}^{\langle j angle}$	$\boldsymbol{T}_{ ext{ent}}^{\langle j angle} (\boldsymbol{I} - \mathbf{f}_r^{\langle j angle^{T}} \mathbf{f}_r^{\langle j angle})$
TransR (AAAI 2015)	$m{T}_{ m ent}^{\langle j angle} m{F}_r^{\langle j angle}$	$m{T}_{ m rel}^{\langle j angle}$	$m{T}_{ m ent}^{\langle j angle} m{F}_r^{\langle j angle}$
RotatE (ICLR 2019)	$\boldsymbol{T}_{\text{ent}}^{\langle j \rangle} \begin{bmatrix} \boldsymbol{P}_r^{\langle j \rangle} & \boldsymbol{Q}_r^{\langle j \rangle} \\ -\boldsymbol{Q}_r^{\langle j \rangle} & \boldsymbol{P}_r^{\langle j \rangle} \end{bmatrix}$	0	$m{T}_{ ext{ent}}^{\langle j angle}$
PairRE (ACL 2021)	$oldsymbol{T}_{ ext{ent}}^{\langle j angle} oldsymbol{\mathfrak{F}}_r^{\langle j angle}$	0	$oldsymbol{T}_{ ext{ent}}^{\langle j angle}\dot{oldsymbol{s}}_r^{\langle j angle}$

02 Semantic Matching Decoder

• The score of (*h*, *r*, *t*) is computed by the **similarity** between the individual components of the triplet

Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Semantic Matching Decoder: RESCAL

• The score of (*h*, *r*, *t*) is computed by the **pairwise multiplication** between the individual components of the triplet

Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Semantic Matching Decoder: DistMult

• The score of (*h*, *r*, *t*) is computed by the sum of the Hadamard product of the individual components of the triplet

Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

02 Semantic Matching Decoder: Summary

• The score of (*h*, *r*, *t*) is computed by the **similarity** between the individual components of the triplet

 $f_{\mathbf{w}}(h,r,t)[j] = \boldsymbol{H}^{(0)}[h,:] \overline{\boldsymbol{U}}_{r}^{(j)} (\boldsymbol{H}^{(0)}[t,:])^{\mathsf{T}}$

02 Semantic Matching Decoder: Summary

• The score of (*h*, *r*, *t*) is computed by the **similarity** between the individual components of the triplet

$$f_{\mathbf{w}}(h,r,t)[j] = \boldsymbol{H}^{(0)}[h,:] \overline{\boldsymbol{U}}_{r}^{(j)} \big(\boldsymbol{H}^{(0)}[t,:] \big)^{\mathsf{T}}$$

02 Instantiations of ReED

• ReED can express various KGRL methods using **different instantiations and configurations** of the RAMP encoder and the triplet classification decoder

02 Instantiations of ReED

• A triplet classification decoder can also be **used standalone**

02 Instantiations of ReED

• Our ReED Framework can express at least 15 different existing KGRL models

Graph Neural Network-based models

- **R-GCN** (ESWC 2018)
- WGCN (AAAI 2019)
- CompGCN (ICLR 2020)

Shallow-architecture Models

- TransE (NeurIPS 2013)
- TransH (AAAI 2014)
- TransR (AAAI 2015)
- RotatE (ICLR 2019)
- **PairRE** (ACL 2021)
 - English official language British Columbia

- **RESCAL** (ICML 2011)
- **DistMult** (ICLR 2015)
- HolE (AAAI 2016)
- ComplEx (ICML 2016)
- ANALOGY (ICML 2017)
- SimplE (NeurIPS 2018)
- QuatE (NeurIPS 2019)

03 Empirical Loss of a Triplet Classifier

 γ-margin Loss: take into account when the score of the ground-truth label is less than or equal to that of the other label with a margin of γ

03 Expected Loss of a Triplet Classifier

 Classification Loss: take into account when the score of the ground-truth label is less than or equal to that of the other label

03 Transductive PAC-Bayesian Generalization Bounds

 Extends the transductive PAC-Bayesian generalization bound for the stochastic classifier to the deterministic classifier

Theorem 4.3 Let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a **deterministic triplet classifier** with parameters \mathbf{w} , and \mathcal{P} be any prior distribution on \mathbf{w} . Let us consider the finite full triplet set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{R} \times \mathcal{V}$. Construct a posterior distribution $\mathcal{Q}_{\mathbf{w}+\mathbf{w}}$ by adding any random perturbation \mathbf{w} to \mathbf{w} such that

 $\mathbb{P}\left(\max_{(h,r,t)\in\mathcal{E}} \|f_{\mathbf{w}+\ddot{\mathbf{w}}}(h,r,t) - f_{\mathbf{w}}(h,r,t)\|_{\infty} < \frac{1}{4}\right) > \frac{1}{2}.$ Then, for any $\gamma, \delta > 0$, with probability $1 - \delta$ over the choice of a training triplet set $\hat{\mathcal{E}}$ drawn from the full triplet set \mathcal{E} (such that $20 \le |\hat{\mathcal{E}}| \le |\mathcal{E}| - 20$ and $|\mathcal{E}| \ge 40$) without replacement, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(\mathbf{f_{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(\mathbf{f_{w}}) + \sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{2|\hat{\mathcal{E}}|}} \left[2D_{KL}(\mathcal{Q}_{\mathbf{w}+\ddot{\mathbf{w}}}||\mathcal{P}) + \ln\frac{4\theta(|\hat{\mathcal{E}}|,|\mathcal{E}|)}{\delta}\right]$$

where $D_{KL}(\mathcal{Q}_{\mathbf{w}+\ddot{\mathbf{w}}}||\mathcal{P})$ is the KL-divergence of $\mathcal{Q}_{\mathbf{w}+\ddot{\mathbf{w}}}$ from \mathcal{P} , and $\theta(|\hat{\mathcal{E}}|,|\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1-\frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}$

03 Generalization Bounds for ReED: Proof Sketch

03 Generalization Bounds for ReED: Assumptions

Assumption 1

All activation functions are Lipschitz-continuous with respect to the Euclidean norm of input/output vectors.

Assumption 2

The training triplets in $\hat{\mathcal{E}}$ are **sampled** from the finite full triplet set \mathcal{E} without replacement.

Assumption 3

Regarding the sizes of \mathcal{E} and $\hat{\mathcal{E}}$, we assume $|\mathcal{E}| \ge 40$ and $20 \le |\hat{\mathcal{E}}| \le |\mathcal{E}| - 20$

• Compute the **generalization bound** of a model that uses the **RAMP encoder** and the **TD decoder**

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d \ln(N_{\mathbf{w}} d)}{\gamma^2} + \ln \frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1 - \frac{|\mathcal{E}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa, \kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, *d* is the maximum dimension, and *s* is the maximum Frobenius norm of the learnable matrices

- Generalization bound increases as the total number of learnable matrices increases
 - Explains the effectiveness of the parameter-sharing strategies and the basis/block decomposition

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d \ln(N_{\mathbf{w}} d)}{\gamma^2} + \ln \frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa, \kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, *d* is the maximum dimension, and *s* is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the number of layers in the RAMP encoder increases

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d \ln(N_{\mathbf{w}} d)}{\gamma^2} + \ln \frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1 - \frac{|\mathcal{E}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa, \kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, *d* is the maximum dimension, and *s* is the maximum Frobenius norm of the learnable matrices

- Generalization bound increases as the infinity norms of the diffusion matrices increase
 - A mean aggregator is a better option than a sum aggregator in reducing the generalization bound

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d\ln(N_{\mathbf{w}}d)}{\gamma^2} + \ln\frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|,|\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1-\frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa,$ $\kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, d is the maximum dimension, and s is the maximum Frobenius norm of the learnable matrices

- Generalization bound increases as the norms of the learnable matrices increase
 - Provides theoretical justification for weight normalization & normalization of entity representations

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d \ln(N_{\mathbf{w}} d)}{\gamma^2} + \ln \frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa, \kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, *d* is the maximum dimension, and *s* is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the dimensions increase

Theorem 4.4 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the TD decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \zeta_L^2 s^{2L} d\ln(N_{\mathbf{w}} d)}{\gamma^2} + \ln \frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|,|\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1-\frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \zeta_L = 2\tau^L ||X_{ent}||_2 + 2\kappa ||X_{ent}||_2 (\sum_{i=0}^{L-1} \tau^i) + ||X_{rel}||_2, \tau = C_{\phi} + \kappa, \kappa = C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r, N_w$ is the total number of learnable matrices, *d* is **the maximum dimension**, and *s* is the maximum Frobenius norm of the learnable matrices

03 Generalization Bounds for ReED: Proof Sketch

- Compute the generalization bound of a model that uses the RAMP encoder and the SM decoder
 - While the magnitude may vary, the increasing and decreasing trends of the factors are same with TD

Theorem 4.5 For any $L \ge 0$, let $f_{\mathbf{w}}: \mathcal{V} \times \mathcal{R} \times \mathcal{V} \to \mathbb{R}^2$ be a triplet classifier designed by the combination of the RAMP encoder with *L*-layers and the SM decoder. Let k_r be the maximum of the infinity norms for all possible $S_r^{(l)}$ in the RAMP encoder. Then, for any $\delta, \gamma > 0$, with probability at least $1 - \delta$ over a training triplet set $\hat{\mathcal{E}}$, for any \mathbf{w} , we have

$$\mathcal{L}_{0,\mathcal{E}}(f_{\mathbf{w}}) \leq \mathcal{L}_{\gamma,\hat{\mathcal{E}}}(f_{\mathbf{w}}) + \mathcal{O}\left(\sqrt{\frac{1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|}}{|\hat{\mathcal{E}}|}} \left[\frac{N_{\mathbf{w}} L^2 \eta_L^4 s^{4L} d\ln(N_{\mathbf{w}}d)}{\gamma^2} + \ln\frac{\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|)}{\delta}\right]\right)$$

where $\theta(|\hat{\mathcal{E}}|, |\mathcal{E}|) = 3\sqrt{|\hat{\mathcal{E}}|(1 - \frac{|\hat{\mathcal{E}}|}{|\mathcal{E}|})\ln|\hat{\mathcal{E}}|}, \eta_L = \tau^L ||X_{ent}||_2 + \kappa ||X_{rel}||_2 (\sum_{i=0}^{L-1} \tau^i), \tau = C_{\phi} + \kappa, \kappa = 0$

 $C_{\phi}C_{\rho}C_{\psi}\sum_{r\in\mathcal{R}}k_r$, $N_{\mathbf{w}}$ is the total number of learnable matrices, d is the maximum dimension, and s is the maximum Frobenius norm of the learnable matrices

03 Generalization Bounds for ReED: Proof Sketch

04 Experimental Results

• Datasets

- Sampled from three real-world knowledge graphs
- FB15K237, CoDEx-M, UMLS-43

Experimental Details

- Create a training triplet set by sampling without replacement from the full triplet set
- Measure the generalization errors on real-world datasets
 - Generalization error: an actual error observed in a particular experiment
 - Generalization bound: the **theoretical upper bound** of a generalization error

04 Varying the Aggregator: Mean vs Sum

• Generalization errors of sum aggregators are higher than mean aggregators

04 Varying the Norms of Weight Matrices

• Generalization errors increase as the norm of weight matrices increases

04 Varying the Number of Layers

• Generalization errors increase as the number of layers in the encoder increases

04 Varying the Maximum Dimension

- Generalization errors increase as the maximum dimension increases
 - Extract the initial features from textual descriptions of entities and relations in FB15K237

05 Conclusion

- A novel **ReED framework** expressing at least 15 KGRL models
 - Subsume both GNN-based models and shallow-architecture models
- The first PAC-Bayesian generalization bounds for ReED with different types of decoders
 - ReED with Translational Distance decoder and Semantic Matching decoder
- Provide theoretical grounds for commonly used tricks in KGRL
 - E.g., parameter-sharing and weight normalization schemes
- Empirically show the relationships between **the critical factors in the theoretical bounds** and **the actual generalization errors**
 - The critical factors explaining the generalization bounds also affect an actual generalization error

Thank You!

Our datasets and codes are available at:

https://github.com/bdi-lab/ReED

You can find us at: {jjlee98, hminsung, jjwhang}@kaist.ac.kr https://bdi-lab.kaist.ac.kr

