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Knowledge Graphs
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• Represent human knowledge using triplets



Triplet Classification on Knowledge Graphs
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Knowledge Graph Representation Learning
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• Learn representations of the entities and relations in a knowledge graph



Generalization Bound
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Loss

Model Complexity

Generalization Error

• Generalization Error

• Difference between the losses calculated on the full set ℰ and the training set መℰ

• Generalization Bound

• Theoretical upper bound of the generalization error

Loss calculated on ℰ

Loss calculated on መℰ

Generalization
Error

Model Complexity

Generalization Bound

Generalization Error



PAC-Bayesian Generalization Bounds
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Training

Prior distribution
Independent of the training set

Hypothesis
space

Probability

Training set Posterior distribution
Learned by a learning algorithm

Probability

Hypothesis
space

• Probably Approximately Correct (PAC) theory

• Fundamental tools for analyzing the generalization bounds

• PAC-Bayesian approach

• Measure generalization bounds based on the difference between 
the prior distribution and the posterior distribution

VC dimension

Rademacher complexity

PAC-Bayesian approach

PAC theory

⋮



Transductive PAC-Bayesian Generalization Bounds
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Original PAC-Bayesian framework Transductive PAC-Bayesian framework

Infinite and Continuous
Data Distribution

i.i.d. sampling

Training Dataset

Finite Full Dataset

Sampling without 
replacement

Training Dataset



• Consists of the RAMP encoder and a triplet classification decoder

• RAMP encoder learns the representations of entities by aggregating representations of the 

neighboring entities and relations

• Triplet classification decoder uses the representations to compute the scores of each triplet

• Assigns two different scores for each triplet, stored in 𝑓𝐰 ℎ, 𝑟, 𝑡 0 and 𝑓𝐰 ℎ, 𝑟, 𝑡 1

Relation-aware Encoder-Decoder Framework
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Relation-Aware Message Passing Encoder Triplet Classification Decoder
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USA Vienna
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-17

Semantic Matching Decoder

: inverse relations

: normal relations



RAMP Encoder
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• Update an entity’s representation based on the entity and relation

representations of its neighbors which are defined per relation using a 

relation-specific graph diffusion matrix

capital

North 
America

Austria

member of

member of

contains

Wien River

named 
after

Hawaii official language

official
language

member ofUN

Canada

part of

country Vancouver

located in

Vienna

English

British 
Columbia

USA
part of



RAMP Encoder
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RAMP Encoder
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RAMP Encoder
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• Update an entity’s representation based on the entity and relation

representations of its neighbors which are defined per relation using a 

relation-specific graph diffusion matrix
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RAMP Encoder
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• Project the neighbor entities and relations’ representations using 

relation-specific projection matrices

• Different projection matrices for entities and relations
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RAMP Encoder
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• Aggregate the neighbor representations to update the entity’s representation

• The diffusion matrix also represents the type of aggregator (e.g., sum, mean)
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RAMP Encoder
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• Update a relation’s representation with a projection matrix

• Same projection matrix for all relations

s
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Special Cases of RAMP Encoder
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• RAMP encoder represents the aggregation process in a general form that can 

subsume many existing KGRL encoders
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Special Cases of RAMP Encoder
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• R-GCN (ESWC 2018)

• An adjacency matrix 𝑨𝑟 normalized by a problem-specific constant 𝑐𝑣,𝑟 is used as the 

relation-specific graph diffusion matrix

𝑴𝑟
𝑙
𝑣, : = 𝑯 𝑙−1 𝑣, : 𝑹 𝑙−1 𝑟, : 𝑣 ∈ 𝒱, 𝑟 ∈ ℛ

𝑯 𝑙 = ReLU 𝑯 𝑙−1 𝑾0
𝑙
+ 𝜌 

𝑟∈ℛ

𝑺𝑟
𝑙
𝜓 𝑴𝑟

𝑙 𝑾𝑟
𝑙

𝑼𝑟
𝑙

, 𝑺𝑟
𝑙
𝑣, : =

1

𝑐𝑣,𝑟
𝑨𝑟[𝑣, : ]



Special Cases of RAMP Encoder
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• WGCN (AAAI 2019)

• An adjacency matrix 𝑨𝑟 is used as the relation-specific graph diffusion matrix

• Relation-specific projection matrices share some parameters

𝑴𝑟
𝑙
𝑣, : = 𝑯 𝑙−1 𝑣, : 𝑹 𝑙−1 𝑟, : 𝑣 ∈ 𝒱, 𝑟 ∈ ℛ

𝑯 𝑙 = Tanh 𝑯 𝑙−1 𝑾0
𝑙
+ 𝜌 

𝑟∈ℛ

𝑺𝑟
𝑙
𝜓 𝑴𝑟

𝑙 𝛼𝑟
𝑙
𝑾0

𝑙

𝑼𝑟
𝑙

, 𝑺𝑟
𝑙
= 𝑨𝑟



Special Cases of RAMP Encoder
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• CompGCN (ICLR 2020)

• An adjacency matrix 𝑨𝑟 is used as the relation-specific graph diffusion matrix

• Relations in the same category share the relation-specific projection matrix

𝑴𝑟
𝑙
𝑣, : = 𝑯 𝑙−1 𝑣, : 𝑹 𝑙−1 𝑟, : 𝑣 ∈ 𝒱, 𝑟 ∈ ℛ
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𝑙
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𝑙

, 𝑹 𝑙 = 𝑹 𝑙−1 𝑼0
𝑙
, 𝑺𝑟

𝑙
= 𝑨𝑟



Special Cases of RAMP Encoder: Summary
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𝜙 𝜌, 𝜓 𝑾𝑟
𝑙

𝑼𝑟
𝑙

𝑺𝑟
𝑙
[𝑣, : ]

R-GCN ReLU identity 𝑾𝑟
𝑙 𝟎

1

𝑐𝑣,𝑟
𝑨𝑟[𝑣, : ]

WGCN Tanh identity 𝛼𝑟
𝑙
𝑾0

𝑙 𝟎 𝑨𝑟[𝑣, : ]

CompGCN

Subtraction Tanh identity 𝑾𝜆(𝑟)
𝑙

–𝑾𝜆(𝑟)
𝑙

𝑨𝑟[𝑣, : ]

Multiplication Tanh identity diag 𝑹 𝑙−1 [𝑟, : ] 𝑾𝜆(𝑟)
𝑙

𝟎 𝑨𝑟[𝑣, : ]

Circular-
correlation

Tanh identity 𝑪𝑟
𝑙−1

𝑾𝜆(𝑟)
𝑙

𝟎 𝑨𝑟[𝑣, : ]

• RAMP encoder can represent R-GCN (ESWC 2018), WGCN (AAAI 2019), and 

CompGCN (ICLR 2020) by appropriately setting the functions and matrices



Translational Distance Decoder

• The score of (ℎ, 𝑟, 𝑡) is computed by the distance between ℎ and 𝑡 after 

relation-specific projections and a relation-specific translation

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = − 𝑯 𝐿 ℎ, : 𝑾𝑟
⟨𝑗⟩
+ 𝑹 𝐿 𝑟, : ഥ𝑼𝑟

⟨𝑗⟩
−𝑯 𝐿 𝑡, : 𝑽𝑟

⟨𝑗⟩

2
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Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)

𝑾𝑟
⟨𝑗⟩

USA
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𝑽𝑟
⟨𝑗⟩
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Vienna

British 
Columbia

USA
𝑹 𝐿 𝑟, : ഥ𝑼𝑟

⟨𝑗⟩

British 
Columbia

USA

Translations of
head entities

Translations of
tail entities

British 
Columbia

USA

English

Vienna

Score 
Calculation

English



Translational Distance Decoder: TransE

• The score of (ℎ, 𝑟, 𝑡) is computed by the distance between ℎ and 𝑡 after a 

relation-specific translation

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = − 𝑯 0 ℎ, : 𝑻ent
⟨𝑗⟩

+ 𝑹 0 𝑟, : 𝑻rel
⟨𝑗⟩

−𝑯 0 𝑡, : 𝑻ent
⟨𝑗⟩

2
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Score 
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English
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Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)



Translational Distance Decoder: RotatE

• The score of (ℎ, 𝑟, 𝑡) is computed by the distance between ℎ and 𝑡 after a 

relation-specific rotation of ℎ

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = − 𝑯 0 ℎ, : 𝑻ent
⟨𝑗⟩ 𝑷𝑟

𝑗
𝑸𝑟

𝑗

–𝑸𝑟
𝑗

𝑷𝑟
𝑗

−𝑯 0 𝑡, : 𝑻ent
⟨𝑗⟩

2
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Calculating the scores of (British Columbia, official language, English) and (USA, contains, Vienna)

USA

British
Columbia

Vienna

British 
Columbia

USA

Translations of
head entities

Translations of
tail entities

Score 
Calculation

English

Vienna

English

British 
Columbia USA

British 
Columbia USA

Vienna

English

𝑷𝑟
𝑗

𝑸𝑟
𝑗

–𝑸𝑟
𝑗

𝑷𝑟
𝑗



Translational Distance Decoder: Summary

• The score of (ℎ, 𝑟, 𝑡) is computed by the distance between ℎ and 𝑡 after 

relation-specific projections and a relation-specific translation

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = − 𝑯 0 ℎ, : 𝑾𝑟
⟨𝑗⟩
+ 𝑹 0 𝑟, : ഥ𝑼𝑟

⟨𝑗⟩
−𝑯 0 𝑡, : 𝑽𝑟

⟨𝑗⟩

2
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𝑾𝑟
⟨𝑗⟩ ഥ𝑼𝑟

⟨𝑗⟩
𝑽𝑟
⟨𝑗⟩

TransE (NeurIPS 2013) 𝑻ent
⟨𝑗⟩

𝑻rel
⟨𝑗⟩

𝑻ent
⟨𝑗⟩

TransH (AAAI 2014) 𝑻ent
𝑗
(𝑰 − 𝐟𝑟

𝑗 ⊤
𝐟𝑟
𝑗
) 𝑻rel

⟨𝑗⟩
𝑻ent

𝑗
(𝑰 − 𝐟𝑟

𝑗 ⊤
𝐟𝑟
𝑗
)

TransR (AAAI 2015) 𝑻ent
⟨𝑗⟩

𝑭𝑟
𝑗 𝑻rel

⟨𝑗⟩
𝑻ent
⟨𝑗⟩

𝑭𝑟
𝑗

RotatE (ICLR 2019) 𝑻ent
𝑗 𝑷𝑟

𝑗
𝑸𝑟

𝑗

–𝑸𝑟
𝑗

𝑷𝑟
𝑗

𝟎 𝑻ent
𝑗

PairRE (ACL 2021) 𝑻ent
𝑗
𝕱𝑟

𝑗 𝟎 𝑻ent
𝑗 ሶ𝕱𝑟

𝑗



Semantic Matching Decoder
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Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

British
Columbia

English

official
language

𝑓𝐰

USA Vienna

contains

𝑓𝐰

• The score of (ℎ, 𝑟, 𝑡) is computed by the similarity between the individual 

components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 𝐿 ℎ, : ഥ𝑼𝑟
𝑗
𝑯 𝐿 𝑡, :

⊤



Semantic Matching Decoder: RESCAL

• The score of (ℎ, 𝑟, 𝑡) is computed by the pairwise multiplication between the 

individual components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 0 ℎ, : 𝑻ent
<𝑗>

𝑩𝑟
<𝑗>

𝑻ent
<𝑗>⊤

𝑯 0 𝑡, :
⊤
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Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

British
Columbia

English

official
language

𝑓𝐰

USA Vienna

contains

𝑓𝐰



Semantic Matching Decoder: DistMult
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• The score of (ℎ, 𝑟, 𝑡) is computed by the sum of the Hadamard product of the 

individual components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 0 ℎ, : 𝑻ent
<𝑗>

diag 𝑹 0 𝑟, : 𝑻rel
<𝑗>

𝑻ent
<𝑗>⊤

𝑯 0 𝑡, :
⊤

𝑓𝐰 𝑓𝐰

British
Columbia

English

official
language

USA Vienna

contains

Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)



Semantic Matching Decoder: Summary
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HolE
(AAAI 2016)

ComplEx
(ICML 2016)

𝑓𝐰 𝑓𝐰

• The score of (ℎ, 𝑟, 𝑡) is computed by the similarity between the individual 

components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 0 ℎ, : ഥ𝑼𝑟
𝑗
𝑯 0 𝑡, :

⊤

RESCAL
(ICML 2011)

𝑓𝐰

DistMult
(ICLR 2015)

𝑓𝐰



ANALOGY
(ICML 2017)

Semantic Matching Decoder: Summary
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QuatE
(NeurIPS 2019)

SimplE
(NeurIPS 2018)

𝑓𝐰

𝑓𝐰
𝑓𝐰

• The score of (ℎ, 𝑟, 𝑡) is computed by the similarity between the individual 

components of the triplet

𝑓𝐰 ℎ, 𝑟, 𝑡 𝑗 = 𝑯 0 ℎ, : ഥ𝑼𝑟
𝑗
𝑯 0 𝑡, :

⊤



Instantiations of ReED
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RAMP Encoder

Translational Distance

Semantic Matching

CompGCN
+TransE

⋮

R-GCN
+DistMult 

⋮

• ReED can express various KGRL methods using different instantiations and 

configurations of the RAMP encoder and the triplet classification decoder

British Columbia

English

official language

USA Vienna

contains

-17



Instantiations of ReED
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RAMP Encoder

• A triplet classification decoder can also be used standalone

TransR
RotatE

⋮

DistMult
ANALOGY 

⋮

Translational Distance

British Columbia

English

official language

Semantic Matching

USA Vienna

contains

-17



Instantiations of ReED
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• Our ReED Framework can express at least 15 different existing KGRL models

Graph Neural Network-based models

• R-GCN (ESWC 2018)

• WGCN (AAAI 2019)

• CompGCN (ICLR 2020)

Shallow-architecture Models

• TransE (NeurIPS 2013)

• TransH (AAAI 2014)

• TransR (AAAI 2015)

• RotatE (ICLR 2019)

• PairRE (ACL 2021)

• RESCAL (ICML 2011)

• DistMult (ICLR 2015)

• HolE (AAAI 2016)

• ComplEx (ICML 2016)

• ANALOGY (ICML 2017)

• SimplE (NeurIPS 2018)

• QuatE (NeurIPS 2019)

British Columbia

English

official language

USA Vienna

contains

-17
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• 𝜸-margin Loss: take into account when the score of the ground-truth label
is less than or equal to that of the other label with a margin of 𝛾

Definition (𝛾-margin loss of Triplet Classifier)

Definition (Empirical Loss of Triplet Classifier)

Measured on a training triplet set

Training Triplet Set መℰ

⋮

𝛾

𝛾

𝛾

1

| መℰ|

0

1

| መℰ|

𝑓𝐰

𝑓𝐰

𝑓𝐰

Score of the other label

ℒ𝛾,𝒵 𝑓𝐰 =
1

𝒵


ℎ,𝑟,𝑡 ∈𝒵

𝟏 𝑓𝐰 ℎ, 𝑟, 𝑡 𝑦ℎ𝑟𝑡 ≤ 𝛾 + 𝑓𝐰 ℎ, 𝑟, 𝑡 1 − 𝑦ℎ𝑟𝑡

ℒ𝛾, መℰ 𝑓𝐰 =
1

| መℰ|


ℎ,𝑟,𝑡 ∈ መℰ

𝟏 𝑓𝐰 ℎ, 𝑟, 𝑡 𝑦ℎ𝑟𝑡 ≤ 𝛾 + 𝑓𝐰 ℎ, 𝑟, 𝑡 1 − 𝑦ℎ𝑟𝑡

≤

≥

≰

ℒ𝛾, መℰ 𝑓𝐰

True False

True False

True False

Score of the ground-truth label
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Definition (Classification Loss of Triplet Classifier)

ℒ0,𝒵 𝑓𝐰 =
1

𝒵


ℎ,𝑟,𝑡 ∈𝒵

𝟏 𝑓𝐰 ℎ, 𝑟, 𝑡 𝑦ℎ𝑟𝑡 ≤ 𝑓𝐰 ℎ, 𝑟, 𝑡 1 − 𝑦ℎ𝑟𝑡

Definition (Expected Loss of Triplet Classifier)

ℒ0,ℰ 𝑓𝐰 =
1

ℰ


ℎ,𝑟,𝑡 ∈ℰ

𝟏 𝑓𝐰 ℎ, 𝑟, 𝑡 𝑦ℎ𝑟𝑡 ≤ 𝑓𝐰 ℎ, 𝑟, 𝑡 1 − 𝑦ℎ𝑟𝑡

Measured on the full triplet set

• Classification Loss: take into account when the score of 
the ground-truth label is less than or equal to that of the other label

Score of the ground-truth label
Score of the other label

Full Triplet Set ℰ

⋮

1

|ℰ|

0

𝑓𝐰

𝑓𝐰

𝑓𝐰

≤

≱

≰

True False

True False

True False

ℒ0,ℰ 𝑓𝐰

0
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• Extends the transductive PAC-Bayesian generalization bound for the stochastic classifier 
to the deterministic classifier

Theorem 4.3 Let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a deterministic triplet classifier with parameters 𝐰, and 𝒫
be any prior distribution on 𝐰. Let us consider the finite full triplet set ℰ ⊆ 𝒱 × ℛ × 𝒱. Construct a 
posterior distribution 𝒬𝐰+ ሷ𝐰 by adding any random perturbation ሷ𝐰 to 𝐰 such that 

ℙ max
ℎ,𝑟,𝑡 ∈ℰ

𝑓𝐰+ ሷ𝐰 ℎ, 𝑟, 𝑡 − 𝑓𝐰 ℎ, 𝑟, 𝑡 ∞ <
1

4
>

1

2
. Then, for any 𝛾, 𝛿 > 0, with probability 1 − 𝛿 over 

the choice of a training triplet set መℰ drawn from the full triplet set ℰ (such that 20 ≤ መℰ ≤ ℰ − 20

and ℰ ≥ 40) without replacement, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 +
1 −

| መℰ|
ℰ

2 መℰ
2𝐷𝐾𝐿 𝒬𝐰+ ሷ𝐰||𝒫 + ln

4𝜃 | መℰ|, ℰ

𝛿

where 𝐷𝐾𝐿 𝒬𝐰+ ሷ𝐰||𝒫 is the KL-divergence of 𝒬𝐰+ ሷ𝐰 from 𝒫, and 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ
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Assumption 1

All activation functions are Lipschitz-continuous with respect to 
the Euclidean norm of input/output vectors.

Assumption 2

The training triplets in መℰ are sampled
from the finite full triplet set ℰ without replacement.

Assumption 3

Regarding the sizes of ℰ and መℰ, we assume ℰ ≥ 40 and 20 ≤ | መℰ| ≤ ℰ − 20

Generalization Bounds for ReED: Assumptions



Generalization Bound for ReED with TD

KAIST Big Data Intelligence Lab 40

Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, and 

𝑠 is the maximum Frobenius norm of the learnable matrices

• Compute the generalization bound of a model that uses the RAMP encoder and the TD decoder
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Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, 

and 𝑠 is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the total number of learnable matrices increases

• Explains the effectiveness of the parameter-sharing strategies and the basis/block decomposition
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Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of 

the infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, and 

𝑠 is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the number of layers in the RAMP encoder increases
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Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, and 

𝑠 is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the infinity norms of the diffusion matrices increase

• A mean aggregator is a better option than a sum aggregator in reducing the generalization bound
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Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, and 

𝑠 is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the norms of the learnable matrices increase

• Provides theoretical justification for weight normalization & normalization of entity representations
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Theorem 4.4 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the TD decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜁𝐿
2 𝑠2𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜁𝐿 = 2𝜏𝐿 𝑿ent 2 + 2𝜅 𝑿ent 2 σ𝑖=0

𝐿−1 𝜏𝑖 + 𝑿rel 2, 𝜏 = 𝐶𝜙 + 𝜅, 

𝜅 = 𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, 

and 𝑠 is the maximum Frobenius norm of the learnable matrices

• Generalization bound increases as the dimensions increase
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Theorem 4.5 For any 𝐿 ≥ 0, let 𝑓𝐰: 𝒱 × ℛ × 𝒱 → ℝ2 be a triplet classifier designed by the 
combination of the RAMP encoder with 𝐿-layers and the SM decoder. Let 𝑘𝑟 be the maximum of the 

infinity norms for all possible 𝑺𝑟
𝑙

in the RAMP encoder. Then, for any 𝛿, 𝛾 > 0, with probability at 
least 1 − 𝛿 over a training triplet set መℰ, for any 𝐰, we have 

ℒ0,ℰ 𝑓𝐰 ≤ ℒ𝛾, መℰ 𝑓𝐰 + 𝒪
1 −

| መℰ|
ℰ

መℰ

𝑁𝐰 𝐿2 𝜂𝐿
4 𝑠4𝐿 𝑑 ln 𝑁𝐰𝑑

𝛾2
+ ln

𝜃 | መℰ|, ℰ

𝛿

where 𝜃 | መℰ|, ℰ = 3 መℰ 1 −
| መℰ|

ℰ
ln መℰ , 𝜂𝐿 = 𝜏𝐿 𝑿ent 2 + 𝜅 𝑿rel 2 σ𝑖=0

𝐿−1 𝜏𝑖 , 𝜏 = 𝐶𝜙 + 𝜅, 𝜅 =

𝐶𝜙𝐶𝜌𝐶𝜓σ𝑟∈ℛ 𝑘𝑟, 𝑁𝐰 is the total number of learnable matrices, 𝑑 is the maximum dimension, and 𝑠 is 

the maximum Frobenius norm of the learnable matrices

• Compute the generalization bound of a model that uses the RAMP encoder and the SM decoder

• While the magnitude may vary, the increasing and decreasing trends of the factors are same with TD
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Experimental Results

• Datasets

• Sampled from three real-world knowledge graphs 

• FB15K237, CoDEx-M, UMLS-43

• Experimental Details

• Create a training triplet set by sampling without replacement from the full triplet set

• Measure the generalization errors on real-world datasets

• Generalization error: an actual error observed in a particular experiment

• Generalization bound: the theoretical upper bound of a generalization error
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Varying the Aggregator: Mean vs Sum
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FB15K237 CoDEx-M UMLS-43

• Generalization errors of sum aggregators are higher than mean aggregators
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Varying the Norms of Weight Matrices
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• Generalization errors increase as the norm of weight matrices increases
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Varying the Number of Layers
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• Generalization errors increase as the number of layers in the encoder increases
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Varying the Maximum Dimension
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• Generalization errors increase as the maximum dimension increases

• Extract the initial features from textual descriptions of entities and relations in FB15K237



Conclusion

• A novel ReED framework expressing at least 15 KGRL models

• Subsume both GNN-based models and shallow-architecture models

• The first PAC-Bayesian generalization bounds for ReED with different types of decoders

• ReED with Translational Distance decoder and Semantic Matching decoder

• Provide theoretical grounds for commonly used tricks in KGRL

• E.g., parameter-sharing and weight normalization schemes

• Empirically show the relationships between the critical factors in the theoretical bounds 

and the actual generalization errors

• The critical factors explaining the generalization bounds also affect an actual generalization error
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Our datasets and codes are available at:

https://github.com/bdi-lab/ReED

You can find us at:

{jjlee98, hminsung, jjwhang}@kaist.ac.kr

https://bdi-lab.kaist.ac.kr

https://github.com/bdi-lab/ReED
https://bdi-lab.kaist.ac.kr/

