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l 01 Knowledge Graphs

» Represent human knowledge using triplets

member of UN member of
. / country Vancouver
Austria /

Canada
. member of
capital part 01/ located in
Vienna USA part of ,[ANort.h } official
nar?ed \ contains British
arter Columbia

official language

Wien River Hawaii

English

FHEKAIST

“BDILab KAIST Big Data Intelligence Lab



l 01 Triplet Classification on Knowledge Graphs
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l 01 Knowledge Graph Representation Learning

 Learn representations of the entities and relations in a knowledge graph
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l 01 Generalization Bound

 Generalization Error

- Difference between the losses calculated on the full set £ and the training set £

 Generalization Bound

» Theoretical upper bound of the generalization error
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l 01 PAC-Bayesian Generalization Bounds

- Probably Approximately Correct (PAC) theory RS e

« Fundamental tools for analyzing the generalization bounds VC dimension

Rademacher complexity
« PAC-Bayesian approach

« Measure generalization bounds based on the difference between
the prior distribution and the posterior distribution
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l 01 Transductive PAC-Bayesian Generalization Bounds

Original PAC-Bayesian framework Transductive PAC-Bayesian framework
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l 02 Relation-aware Encoder-Decoder Framework

e Consists of the RAMP encoder and a

 RAMP encoder learns the representations of entities by aggregating representations of the
neighboring entities and relations
 Triplet classification decoder uses the representations to compute the scores of each triplet

 Assigns two different scores for each triplet, stored in f,,(h,r,t)[0] and f,,(h, 7, t)[1]

Relation-Aware Message Passing Encoder
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

« Update an entity’'s representation based on the entity and relation
representations of its neighbors which are defined per relation using a
relation-specific graph diffusion matrix
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l 02 RAMP Encoder

* Project the neighbor entities and relations’ representations using
relation-specific projection matrices

 Different projection matrices for entities and relations

MP[v,:] = [HCD[v,:] REDV[r:]] veV,reRr
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l 02 RAMP Encoder

. the neighbor representations to update the entity’s representation

* The also represents the type of aggregator (e.g., sum, mean)

MP[v,:] = [HCD[v,:] REDV[r:]] veEV,reRr
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l 02 RAMP Encoder

« Update a relation’s representation with a projection matrix

« Same projection matrix for all relations
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l 02 Special Cases of RAMP Encoder

 RAMP encoder represents the aggregation process in a general form that can
subsume many existing KGRL encoders

MP[v,:] = [HCD[v,:] REDV[r:]] veV,reRr
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l 02 Special Cases of RAMP Encoder

* R-GCN

+ An adjacency matrix A, normalized by a problem-specific constant ¢, ,. is used as the
relation-specific graph diffusion matrix
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l 02 Special Cases of RAMP Encoder

« WGCN

« An adjacency matrix A, is used as the relation-specific graph diffusion matrix

 Relation-specific projection matrices share some parameters

MP[v,:] = [H-D[p,:] ] vevrewr
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l 02 Special Cases of RAMP Encoder

« CompGCN

« An adjacency matrix A, is used as the relation-specific graph diffusion matrix

 Relations in the same category share the relation-specific projection matrix

MP[v,:]1 = [HCD[v,:] REDV[r:]] veEV,reRr
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l 02 Special Cases of RAMP Encoder: Summary

 RAMP encoder can represent R-GCN , WGCN , and
CompGCN by appropriately setting the functions and matrices
¢ P, w u®  sO,]
1
R-GCN ReLU identity w 0 — A, [,:]
v,r
WGCN Tanh  identity aPwl 0 A,[v,:]
Subtraction | Tanh  identity W/(ll()r) —Wfll()r) A [v,:]
CompGCN Multiplication | Tanh identity diag(R(l_l) [r,:])W%) 0 A.lv,:]
Circular- . . (1=1) y4,(1)
correlation Tanh identity . Wi 0 A.lv,:]
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l 02 Translational Distance Decoder

» The score of (h,r,t) is computed by the distance between h and t after
relation-specific projections and a relation-specific translation
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l 02 Translational Distance Decoder: TransE

« The score of (h,r,t) is computed by the distance between h and t after a
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l 02 Translational Distance Decoder: RotatE

« The score of (h,r,t) is computed by the distance between h and t after a
relation-specific rotation of h
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l 02 Translational Distance Decoder: Summary

« The score of (h,r,t) is computed by the distance between h and t after
relation-specific projections and a relation-specific translation
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l 02 Semantic Matching Decoder

» The score of (h,r,t) is computed by the between the individual
components of the triplet

fu(hr, O] = HO[R, TV (HO[,:])'

A A

official
language

contains

British . .
Columbia ‘ English USA ‘ Vienna

Calculating scores of (British Columbia, official language, English) and (USA, contains, Vienna)

FHEKAIST

“BDILab KAIST Big Data Intelligence Lab



l 02 Semantic Matching Decoder: RESCAL

» The score of (h,r,t) is computed by the between the
individual components of the triplet
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l 02 Semantic Matching Decoder: DistMult

» The score of (h,r,t) is computed by the sum of the of the
individual components of the triplet
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l 02 Semantic Matching Decoder: Summary

» The score of (h,r,t) is computed by the between the individual
components of the triplet

fu(hr, O] = HO[R, 1T (HOL,:])
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l 02 Semantic Matching Decoder: Summary

» The score of (h,r,t) is computed by the similarity between the individual
components of the triplet

fu(hr, O] = HO[R, 1T (HOL,:])
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l 02 |nstantiations of ReED

« ReED can express various KGRL methods using different instantiations and

configurations of the RAMP encoder and the triplet classification decoder
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l 02 |nstantiations of ReED

 Atriplet classification decoder can also be used standalone
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l 02 |nstantiations of ReED

* Our ReED Framework can express at

east 15 different existing KGRL models

 R-GCN
« WGCN
« CompGCN
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l 03 Empirical Loss of a Triplet Classifier

« y-margin Loss: take into account when the score of the ground-truth label

is less than or equal to that of the other label with a of y

" Training Triplet Set & |

Definition (y-margin loss of Triplet Classifier) £ raining Triple --e--=
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l 03 Expected Loss of a Triplet Classifier

« Classification Loss: take into account when the score of
the ground-truth label is less than or equal to that of the other label

. . e : . C Full Triplet Set &
Definition (Classification Loss of Triplet Classifier) £ (==
w : 1
1 =< I —
Loz ) =1z D fulhr, Ome] < fulhurs O = i 1€
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I 03 Transductive PAC-Bayesian Generalization Bounds

« Extends the transductive PAC-Bayesian generalization bound for the stochastic classifier
to the deterministic classifier

Theorem 4.3 Let f,,: V X R X V - R? be a deterministic triplet classifier with parameters w, and P
be any prior distribution on w. Let us consider the finite full triplet set £ € V x R x V. Construct a
posterior distribution 9Q,, . by adding any random perturbation w to w such that

P ((hm%(egllfwm(h, rt) — fu(h,1t)]le < %) > % Then, for any y,§ > 0, with probability 1 — § over
T

the choice of a training triplet set £ drawn from the full triplet set £ (such that 20 < |£| < |€] — 20
and |E| = 40) without replacement, for any w, we have

€]
L= A
< 46(/<l, 1€l
Loc ) < £y e + =120y @) + 1n 2ZUELIED
J 2[€]
where Dy, (Qw+w||P) is the KL-divergence of Q. from P, and 8(|&|, |€]) = 3J|é| ( - %) In|€|
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l 03 Generalization Bounds for ReED: Proof Sketch

Transductive PAC-Bayesian
Generalization Bounds

Add random perturbations
to the fixed parameters

'

Transductive PAC-Bayesian
Generalization Bounds for
a Deterministic Classifier
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l 03 Generalization Bounds for ReED: Assumptions

Assumption 1

All activation functions are Lipschitz-continuous with respect to
the Euclidean norm of input/output vectors.

Assumption 2

The training triplets in £ are sampled
from the finite full triplet set € without replacement.

Assumption 3

Regarding the sizes of £ and &, we assume || > 40 and 20 < |€| < |E] — 20
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I 03 Generalization Bound for ReED with TD

« Compute the generalization bound of a model that uses the RAMP encoder and the TD decoder

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the TD decoder. Let k,. be the maximum of the

infinity norms for all possible S,(f) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

1€
1-— 2 2L 2
1E[ [Nw L2 2 s2L d In(N,, d) 9(|e|,|g|)
LO,E(fw) < [fy,é(fw) + 0 |8 L ]/2 S5
\
where 0121, €1) = 3 [[£] (1 =) In[é], ¢, = 201X enell + 26l Xendla (T3 70) + WXearllz T = Gy + 1,

K = CypChCy Yrer kry Ny iS the total number of learnable matrices, d is the maximum dimension, and
s is the maximum Frobenius norm of the learnable matrices
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I 03 Generalization Bound for ReED with TD

 (Generalization bound increases as the total number of learnable matrices increases
« Explains the effectiveness of the and the

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the TD decoder. Let k,. be the maximum of the

infinity norms for all possible S,(f) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

£l
1 —Ter 2 72 2L A
€l [Ny, L2 {? s2L d In(N,,d) 0(1€1,1€1)
Log(f) < Lye(f) + 0| |—o |2 .
¥ y
where 9(|é|; |g|) = 3\/|é| ( — %) ln|é|, 0L = 27| Xentll2 + ZK”Xent”z(ZiL:_olTi) + | Xrelllz, T = Cy + K,
K= CyChCy Xrer kr, is , d is the maximum dimension,

and s is the maximum Frobenius norm of the learnable matrices
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I 03 Generalization Bound for ReED with TD

« Generalization bound increases as the number of layers in the RAMP encoder increases

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of and the TD decoder. Let k,. be the maximum of

the infinity norms for all possible Sff) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

A

3 \
L =181 [Ny 12 2 52 d In(Nyyd) N ln9(|e|, €]

€ y? §

LO,E (fw) < [/y,é (fw) + 0

\

where 6(|€|,|1€]) = 3\/|é| ( — %) In|€|, ¢, = 27| Xenell2 + 2Kl Xenell2 (X0 ) + I Xrelll2 T = Cp + K,

K = CypChCy Yrer kry Ny iS the total number of learnable matrices, d is the maximum dimension, and
s is the maximum Frobenius norm of the learnable matrices

% KAIST

“BDILab KAIST Big Data Intelligence Lab



I 03 Generalization Bound for ReED with TD

« Generalization bound increases as the infinity norms of the diffusion matrices increase
« A is a better option than a in reducing the generalization bound

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the TD decoder. Let /2, be

. Then, for any §,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

£l )
L =181 [Ny 12 22 52 d In(Nyyd) N ln9(|e|, €]

LO,E(fw) < [fy,é(fw) + 0 V |é ]/2 S

where 8([€], 1€]) = 3J|é|( ~ ) 1ng),

, N, is the total number of learnable matrices, d is the maximum dimension, and
s is the maximum Frobenius norm of the learnable matrices
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I 03 Generalization Bound for ReED with TD

 (Generalization bound increases as the norms of the learnable matrices increase
« Provides theoretical justification for &

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the TD decoder. Let k,. be the maximum of the

infinity norms for all possible S,(f) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

A

€| )

L= Te] [Nw L2 32 522 dIn(Nyd) | 0(I€],1£])
= + In

B & )

LO,E (fw) < [/y,é (fw) + 0

\

where 6(|€|,|1€]) = 3\/|é| ( — %) In|€|, ¢, = 27| Xenell2 + 2Kl Xenell2 (X0 ) + I Xrelll2 T = Cp + K,

K = CypChCy Yrer kry Ny iS the total number of learnable matrices, d is the maximum dimension, and
IS
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I 03 Generalization Bound for ReED with TD

 Generalization bound increases as the dimensions increase

Theorem 4.4 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the TD decoder. Let k,. be the maximum of the

infinity norms for all possible S,(f) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

A

£ )

L =181 [Ny 12 2 52 d In(N,,d) 0(1€1,1€1)
— + In

€ y? §

LO,E (fw) < Ly,é (fw) + 0

\

. n é A s
where 9(|g|; |g|) = 3\/|g| ( — %) ln|€|, 0, = 27| Xenell2 + ZK”Xent”z(ZiL:olTl) + [ Xrelll2, T = Cp + K,
K = CypC,Cy Yren kyry Ny, is the total number of learnable matrices, d is
and s is the maximum Frobenius norm of the learnable matrices

)
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l 03 Generalization Bounds for ReED: Proof Sketch

Prior & Posterior Distributions _

Unroll two-step recursions
considering interactions
between entities and relations

v

Perturbation Bound
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]
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|

on the Hypothesis Space
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I 03 Generalization Bound for ReED with SM

« Compute the generalization bound of a model that uses the RAMP encoder and the SM decoder
*  While the may vary, the increasing and decreasing trends of the factors are same with TD

Theorem 4.5 Forany L > 0, let f,,: V x R X V —> R? be a triplet classifier designed by the
combination of the RAMP encoder with L-layers and the SM decoder. Let k,. be the maximum of the

infinity norms for all possible S,(f) in the RAMP encoder. Then, for any 6,y > 0, with probability at
least 1 — § over a training triplet set £, for any w, we have

A

a
| =r=r 4 A
E| [Nw L2 17 s*L d In(Ny,d) R
\

where 6(|€|,|1€]) = 3\/|é| 1 ——) In|&|, ny = T4l Xentll2 + KliXrelllo(TiZg 8), T = Cp + K, k =

CopCprCy Yrer Ky Ny IS the total number of learnable matrices, d is the maximum dimension, and s is
the maximum Frobenius norm of the learnable matrices
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l 03 Generalization Bounds for ReED: Proof Sketch

Unroll two-step recursions Architecture of
considering interactions _ the RAMP Encoder
between entities and relations
v
Perturbation Bound
of ReED

|

Calculate the Covering Ball Analysis

KL-divergence |
‘ Generalization Bound
for ReED with SM

Prior & Posterior Distributions _ |Assume the Gaussian distributions
on the Hypothesis Space with the same standard deviation
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l 04 Experimental Results

 Datasets

« Sampled from three real-world knowledge graphs
« FB15K237, CoDEx-M, UMLS-43

- Experimental Details

 Create a training triplet set by sampling without replacement from the full triplet set
» Measure the generalization errors on real-world datasets

 Generalization error: an actual error observed in a particular experiment

« Generalization bound: the theoretical upper bound of a generalization error
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l 04 Varying the Aggregator: Mean vs Sum

« Generalization errors of sum aggregators are higher than mean aggregators

FB15K237

0.025| Mean I
2 Sum :[
W 0.022
o
K]
T 0.020
2
2 o0.018
Q
%)

0.016

I I
RAMP+TD RAMP+SM
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Generalization Error

0.025

0.022

0.020

0.018

0.016

CoDEx-M
Mean
Sum I
I
RAMP+TD RAMP+SM

Generalization Error

0.029

0.023

0.017

0.011

UMLS-43

Mean I
Sum I

I

RAMP+TD RAMP+SM

“BDILab

KAIST Big Data Intelligence Lab




l 04 Varying the Norms of Weight Matrices

« Generalization errors increase as the norm of weight matrices increases

FB15K237
Norm 10.0
S 0.018 | = Norm 15.0
L Norm 20.0
c
2 0.016
g I I
=
E=3 0.014 I I
] I I
0.012
RAMP+TD RAMP+SM
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Generalization Error

0.021

0.019

0.017

0.015

CoDEx-M

Norm 15.0
Norm 20.0

Norm 10.0 I

T

RAMP+TD RAMP+SM

Generalization Error

0.028

0.021

0.014

0.007

UMLS-43
Norm 10.0
Norm 15.0 I
Norm 20.0

. |

I
I I

RAMP+TD RAMP+SM

“BDILab

KAIST Big Data Intelligence Lab




l 04 Varying the Number of Layers

» Generalization errors increase as the number of layers in the encoder increases

FB15K237 CoDEx-M UMLS-43

0.0185
S L=2 5 L=2 I 5 00165| 1y [ =2
b 00170| L =3 I I, L=3 w L=3
5 I S 0.0190 5
= = I = 0.0140 I
N N N
5 00155 I I I S I S
Q 9 0.0165 I Q
& I S I g 00115 I

0.014 I I

0.0140 0.0090 I
RAMP+TD RAMP+SM RAMP+TD RAMP+SM RAMP+TD RAMP+SM
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l 04 Varying the Maximum Dimension

 Generalization errors increase as the maximum dimension increases
« Extract the initial features from textual descriptions of entities and relations in FB15K237

0.0275 | 4-64 :[
16 d =96
= d=128
i l
S 0.0220
5 I
N
-
% 0.0165 T
) 1

0.0110 I

RAMP+TD RAMP+SM
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l 05 Conclusion

A novel ReED framework expressing at least 15 KGRL models

« Subsume both GNN-based models and shallow-architecture models

The first PAC-Bayesian generalization bounds for ReED with different types of decoders

« ReED with Translational Distance decoder and Semantic Matching decoder

Provide theoretical grounds for commonly used tricks in KGRL

- E.g., parameter-sharing and weight normalization schemes

Empirically show the relationships between the critical factors in the theoretical bounds
and the actual generalization errors

« The critical factors explaining the generalization bounds also affect an actual generalization error
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Thank You!

Our datasets and codes are available at:
https://qithub.com/bdi-lab/ReED

You can find us at:
{jjlee98, hminsung, jjwhang}@kaist.ac.kr

https://bdi-lab.kaist.ac.kr



https://github.com/bdi-lab/ReED
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