InGram: Inductive Knowledge Graph Embedding via Relation Graphs

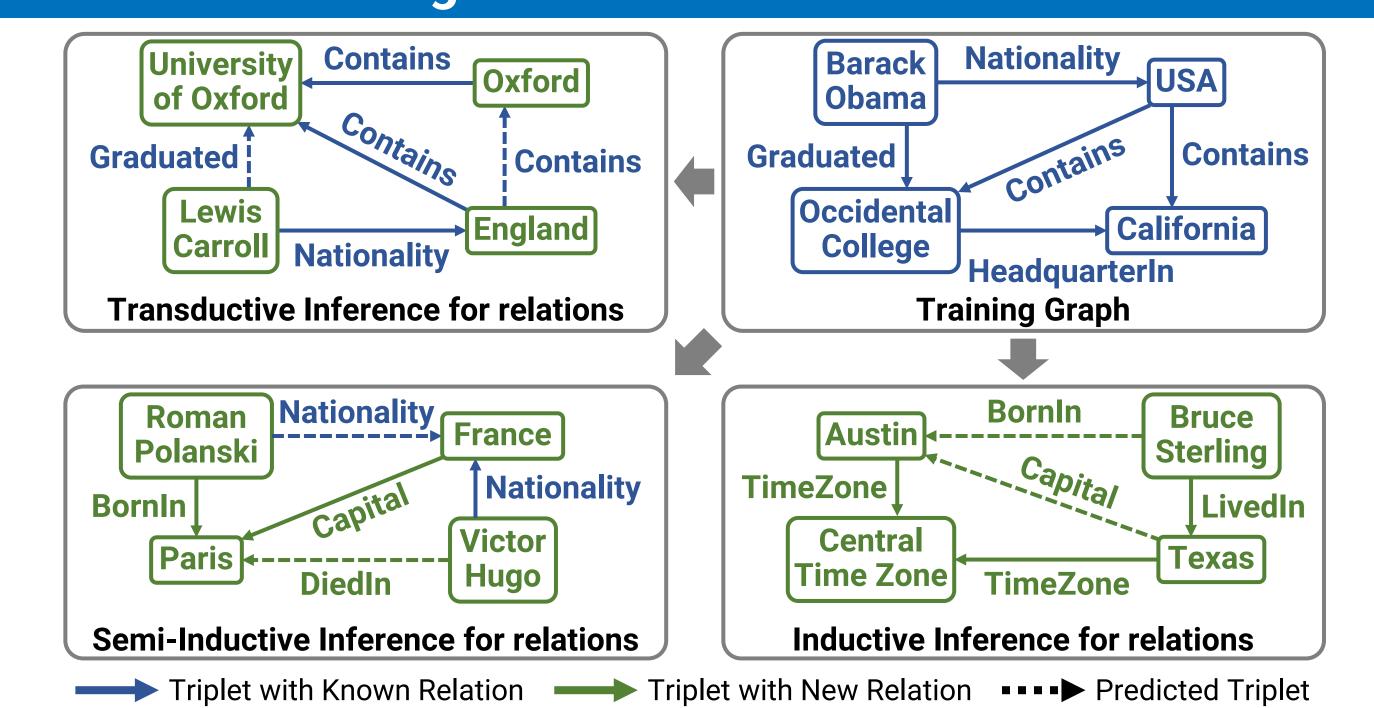
Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang*
School of Computing, KAIST

The 40th International Conference on Machine Learning (ICML 2023)

Main Contributions

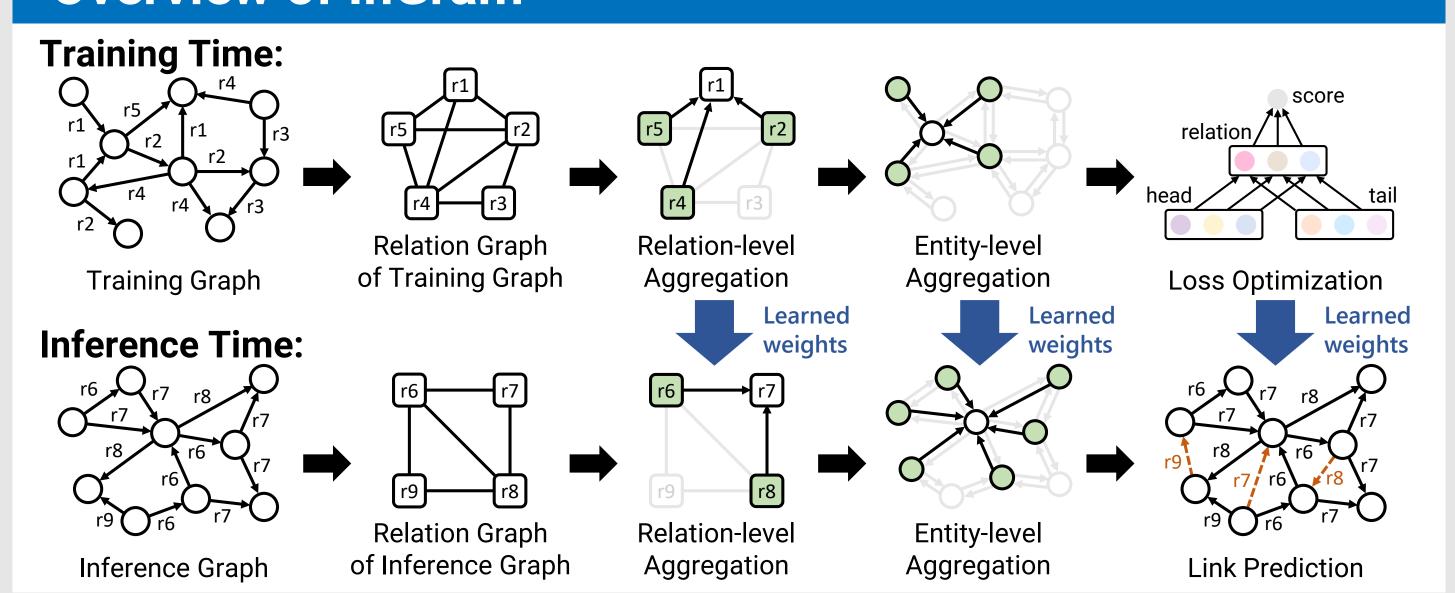
- Propose InGram, an Inductive knowledge Graph embedding method, that can generate embedding vectors for new relations and entities
- Based on the structural similarities between relations, define the relation graph to designate neighboring relations for each relation
- Learn how to aggregate neighboring embeddings to generate relation and entity embeddings using an attention mechanism
- Introduce dynamic split and re-initialization that makes InGram more easily generalizable to a new graph
- Generate 13 real-world datasets; InGram significantly outperforms
 14 different state-of-the-art methods in inductive link prediction
 with varied ratios of new relations

Inductive Learning Scenarios



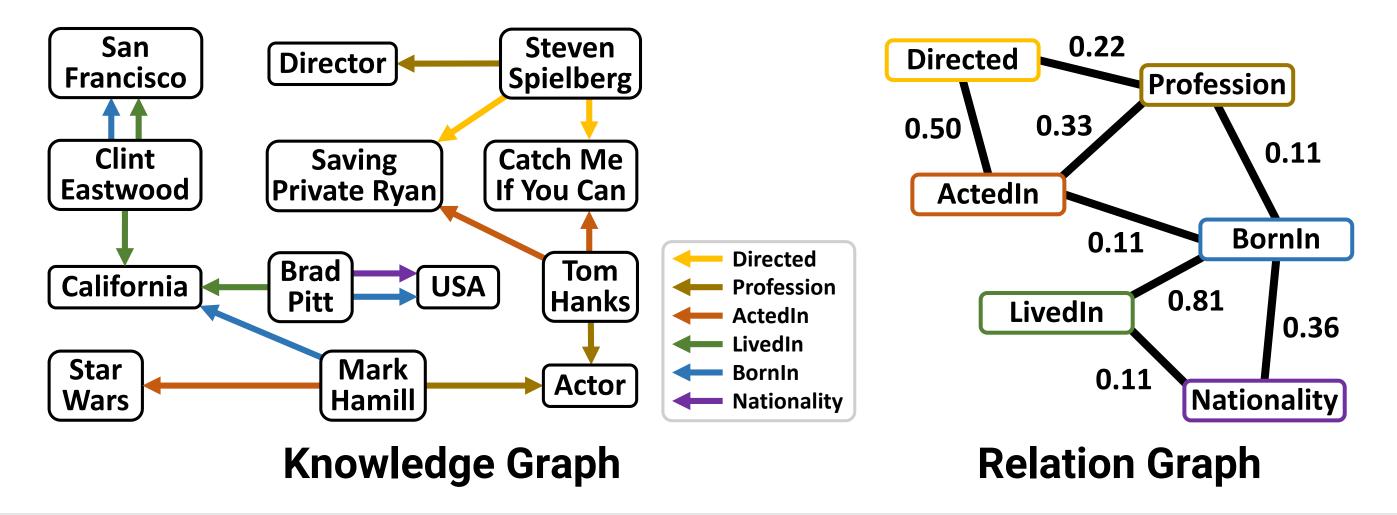
- Semi-Inductive Inference for relations
 - An inference graph contains both known and new relations
- Inductive Inference for relations
- All relations are new in an inference graph

Overview of InGram



Relation Graph

- Define the neighboring relations of each relation
- Each node corresponds to a relation
- Each edge weight indicates the affinity between two relations
- Adjacency matrix of the relation graph $\mathbf{A} = \mathbf{E}_h^{\mathsf{T}} \mathbf{D}_h^{-2} \mathbf{E}_h + \mathbf{E}_t^{\mathsf{T}} \mathbf{D}_t^{-2} \mathbf{E}_t$
- Consider how many entities are shared between two relations and how frequently they share the same entity



Relation-level Aggregation

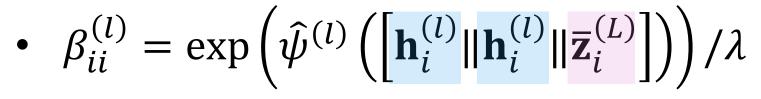
- Aggregate neighboring relations' embedding vectors
- $\mathbf{z}_i^{(l+1)} = \sigma\left(\sum_{r_j \in \mathcal{N}_i} \alpha_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{z}_j^{(l)}\right)$
- Consider the relative importance and the affinity weight
- $\alpha_{ij}^{(l)} = \frac{\exp\left(\psi^{(l)}\left(\left[\mathbf{z}_{i}^{(l)}\|\mathbf{z}_{j}^{(l)}\right]\right) + c_{s(i,j)}^{(l)}\right)}{\sum_{r_{j'} \in \mathcal{N}_{i}} \exp\left(\psi^{(l)}\left(\left[\mathbf{z}_{i}^{(l)}\|\mathbf{z}_{j'}^{(l)}\right]\right) + c_{s(i,j')}^{(l)}\right)}$
- $\psi^{(l)}(\mathbf{x}) = \mathbf{y}^{(l)}\sigma(\mathbf{P}^{(l)}\mathbf{x})$

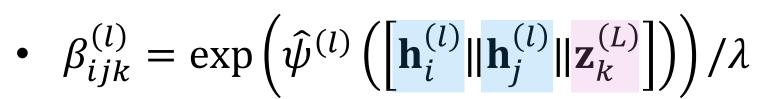
NL Datasets 1.5 1.0 NL-50 NL-75 NL-75 NL-100 $C_{S(i,j)}_{0.0}$ -0.5 -1.0 -1.5 2 3 4 5 6 7 8 9 10 S(i,j)

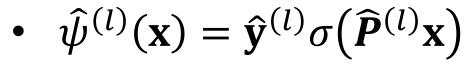
Entity-level Aggregation

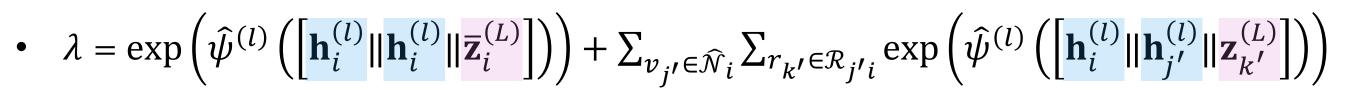
 Compute an entity embedding by considering its own vector, its neighbors' embeddings, and its adjacent relations

•
$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\beta_{ii}^{(l)} \widehat{\mathbf{W}}^{(l)} \left[\mathbf{h}_{i}^{(l)} \| \overline{\mathbf{z}}_{i}^{(L)} \right] + \sum_{v_{i} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{\mathbf{W}}^{(l)} \left[\mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right)$$









Modeling Relation-Entity Interactions & Training Regime

- Final embedding vectors: $\mathbf{z}_k = M\mathbf{z}_k^{(L)}$ and $\mathbf{h}_i = \widehat{M}\mathbf{h}_i^{(\widehat{L})}$
- Scoring function: $f(v_i, r_k, v_i) = \mathbf{h}_i^{\mathsf{T}} \operatorname{diag}(\overline{\mathbf{W}} \mathbf{z}_k) \mathbf{h}_i$
- Use margin-based ranking loss to optimize the model parameters
- Dynamic split: Randomly re-split the fact set and the training set
- Re-initialization: Randomly re-initialize all feature vectors

Experimental Results

- Datasets: 13 real-world datasets with various inductive settings
- Baselines: Grall, Compile, SNRI, INDIGO, RMPI, BLP, QBLP, RAILD, Neuralle, DRUM, NBFNet, RED-GNN, CompGCN, NodePiece
- Link Prediction Results: Inductive Inference for Relations

		$MR\left(\downarrow\right)$	MRR (↑)	Hit@10 (↑)	Hit@1 (↑)
NL-100	Best-baseline	143.9	0.220	0.385	0.136
	InGram	92.6	0.309	0.506	0.212
WK-100	Best-baseline	2005.6	0.096	0.136	0.070
	InGram	1515.7	0.107	0.169	0.072
FB-100	Best-baseline	375.6	0.121	0.263	0.053
	InGram	171.5	0.223	0.371	0.146

Link Prediction Results: Semi-Inductive Inference for Relations

		MR (↓)	MRR (↑)	Hit@10 (1)	Hit@1 (↑)
NL-75	Best-baseline	242.5	0.203	0.361	0.129
	InGram	59.1	0.261	0.464	0.167
WK-75	Best-baseline	523.9	0.172	0.290	0.110
	InGram	315.5	0.247	0.362	0.179
FB-75	Best-baseline	705.1	0.107	0.201	0.057
	InGram	217.4	0.189	0.325	0.119

Link Prediction Results: Transductive Inference for Relations

	MR (↓)	MRR (↑)	Hit@10 (↑)	Hit@1 (↑)
Best-baseline	160.2	0.263	0.430	0.177
InGram	152.4	0.269	0.431	0.189
Best-baseline	7.1	0.677	0.885	0.550
InGram	6.0	0.739	0.895	0.660
	InGram Best-baseline	InGram 152.4 Best-baseline 7.1	Best-baseline 160.2 0.263 InGram 152.4 0.269 Best-baseline 7.1 0.677	Best-baseline 160.2 0.263 0.430 InGram 152.4 0.269 0.431 Best-baseline 7.1 0.677 0.885

Conclusion & Future Work

- Define the relation graph to handle new relations at inference time
- InGram learns to generate embeddings for new relations and entities solely based on the structure of a given knowledge graph
- InGram significantly outperforms 14 different baseline methods on inductive, semi-inductive, and transductive inferences for relations
- We will explore the theoretical analysis of InGram and make InGram robust to possibly noisy information in a given knowledge graph