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Entity-level Aggregation

Overview of InGram
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• Propose InGram, an Inductive knowledge Graph embedding method, 
that can generate embedding vectors for new relations and entities
• Based on the structural similarities between relations, define the 

relation graph to designate neighboring relations for each relation
• Learn how to aggregate neighboring embeddings to generate 

relation and entity embeddings using an attention mechanism
• Introduce dynamic split and re-initialization that makes InGram 

more easily generalizable to a new graph
• Generate 13 real-world datasets; InGram significantly outperforms

14 different state-of-the-art methods in inductive link prediction
with varied ratios of new relations

Main Contributions
• Define the neighboring relations of each relation

• Each node corresponds to a relation
• Each edge weight indicates the affinity between two relations

• Adjacency matrix of the relation graph 𝑨𝑨 = 𝑬𝑬h⊤𝑫𝑫h
−2𝑬𝑬ℎ + 𝑬𝑬t⊤𝑫𝑫t

−2𝑬𝑬t
• Consider how many entities are shared between two relations and 

how frequently they share the same entity

Relation Graph

• Semi-Inductive Inference for relations
• An inference graph contains both known and new relations

• Inductive Inference for relations
• All relations are new in an inference graph

Inductive Learning Scenarios

Transductive Inference for relations

Semi-Inductive Inference for relations

Training Graph

Inductive Inference for relations
Triplet with Known Relation Triplet with New Relation Predicted Triplet
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• Aggregate neighboring relations’ embedding vectors

• 𝐳𝐳𝑖𝑖
𝑙𝑙+1 = 𝜎𝜎 ∑𝑟𝑟𝑗𝑗∈𝒩𝒩𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖

𝑙𝑙 𝑾𝑾 𝑙𝑙 𝐳𝐳𝑗𝑗
𝑙𝑙

• Consider the relative importance and
the affinity weight

• 𝛼𝛼𝑖𝑖𝑖𝑖
𝑙𝑙 =
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• 𝜓𝜓 𝑙𝑙 𝐱𝐱 = 𝐲𝐲 𝑙𝑙 𝜎𝜎 𝑷𝑷 𝑙𝑙 𝐱𝐱

Relation-level Aggregation

=      +      +

• Define the relation graph to handle new relations at inference time
• InGram learns to generate embeddings for new relations and entities

solely based on the structure of a given knowledge graph
• InGram significantly outperforms 14 different baseline methods on 

inductive, semi-inductive, and transductive inferences for relations
• We will explore the theoretical analysis of InGram and make InGram 

robust to possibly noisy information in a given knowledge graph

Conclusion & Future Work

• Datasets: 13 real-world datasets with various inductive settings
• Baselines: GraIL, CoMPILE, SNRI, INDIGO, RMPI, BLP, QBLP, RAILD, 

NeuralLP, DRUM, NBFNet, RED-GNN, CompGCN, NodePiece
• Link Prediction Results: Inductive Inference for Relations

• Link Prediction Results: Semi-Inductive Inference for Relations

• Link Prediction Results: Transductive Inference for Relations

Experimental Results

MR (↓) MRR (↑) Hit@10 (↑) Hit@1 (↑)

NL-100 Best-baseline 143.9 0.220 0.385 0.136
InGram 92.6 0.309 0.506 0.212

WK-100 Best-baseline 2005.6 0.096 0.136 0.070
InGram 1515.7 0.107 0.169 0.072

FB-100 Best-baseline 375.6 0.121 0.263 0.053
InGram 171.5 0.223 0.371 0.146

• Final embedding vectors: 𝐳𝐳𝑘𝑘 = 𝑴𝑴𝐳𝐳𝑘𝑘
𝐿𝐿 and 𝐡𝐡𝑖𝑖 = �𝑴𝑴𝐡𝐡𝑖𝑖

�𝐿𝐿

• Scoring function: 𝑓𝑓 𝑣𝑣𝑖𝑖 , 𝑟𝑟𝑘𝑘 , 𝑣𝑣𝑗𝑗 = 𝐡𝐡𝑖𝑖⊤diag 𝑾𝑾𝐳𝐳𝑘𝑘 𝐡𝐡𝑗𝑗
• Use margin-based ranking loss to optimize the model parameters
• Dynamic split: Randomly re-split the fact set and the training set
• Re-initialization: Randomly re-initialize all feature vectors

Modeling Relation-Entity Interactions & Training Regime
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MR (↓) MRR (↑) Hit@10 (↑) Hit@1 (↑)

NL-75 Best-baseline 242.5 0.203 0.361 0.129
InGram 59.1 0.261 0.464 0.167

WK-75 Best-baseline 523.9 0.172 0.290 0.110
InGram 315.5 0.247 0.362 0.179

FB-75 Best-baseline 705.1 0.107 0.201 0.057
InGram 217.4 0.189 0.325 0.119

MR (↓) MRR (↑) Hit@10 (↑) Hit@1 (↑)

NL-0 Best-baseline 160.2 0.263 0.430 0.177
InGram 152.4 0.269 0.431 0.189

NELL-995-v1 Best-baseline 7.1 0.677 0.885 0.550
InGram 6.0 0.739 0.895 0.660
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