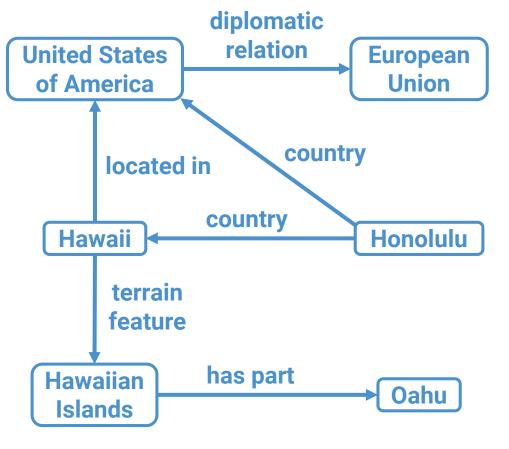
InGram: Inductive Knowledge Graph Embedding via Relation Graphs

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang* School of Computing, KAIST

* Corresponding Author

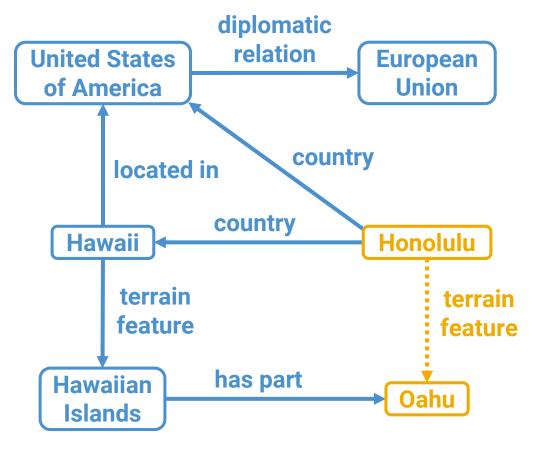
The 40th International Conference on Machine Learning (ICML 2023)

Knowledge Graph



Training Graph

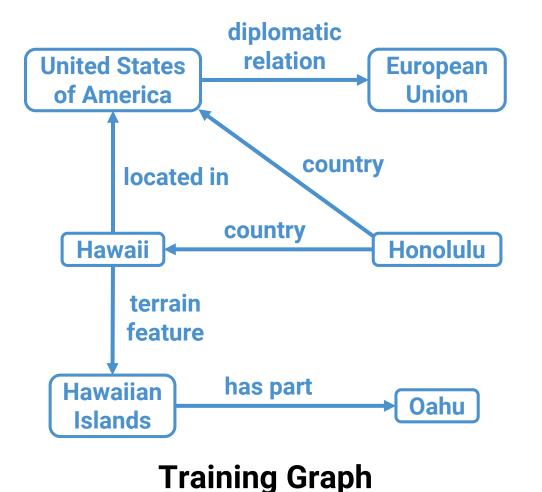
Transductive Knowledge Graph Completion



(Honolulu, terrain feature, ?)

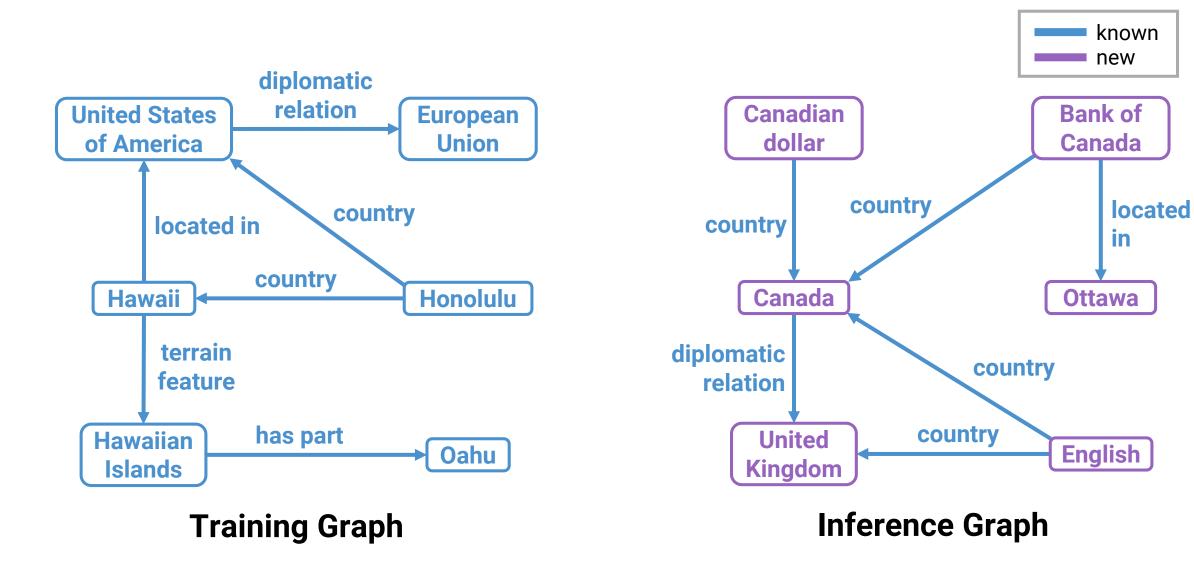
Training Graph

Existing Inductive Knowledge Graph Completion

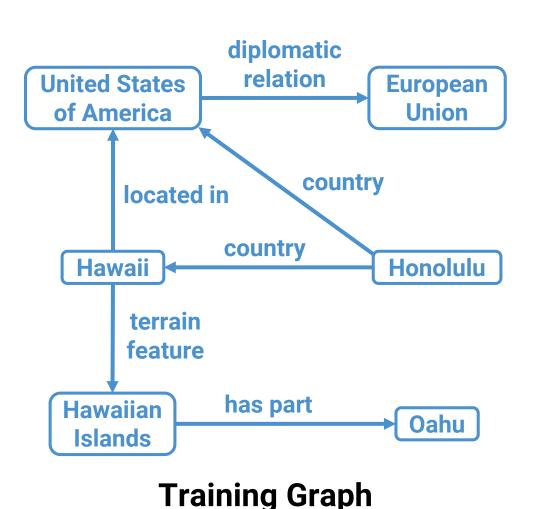


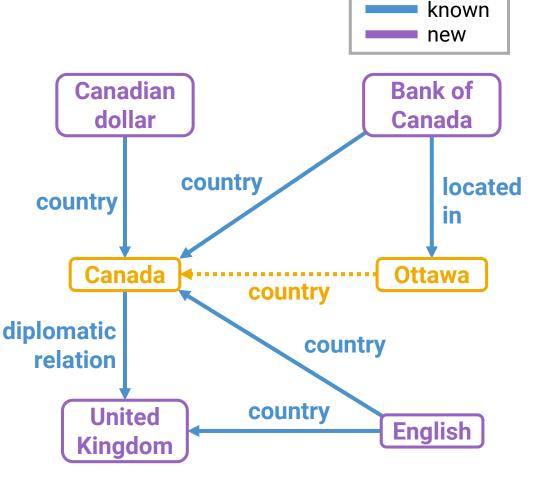
(Ottawa, Country, ?)

Existing Inductive Knowledge Graph Completion



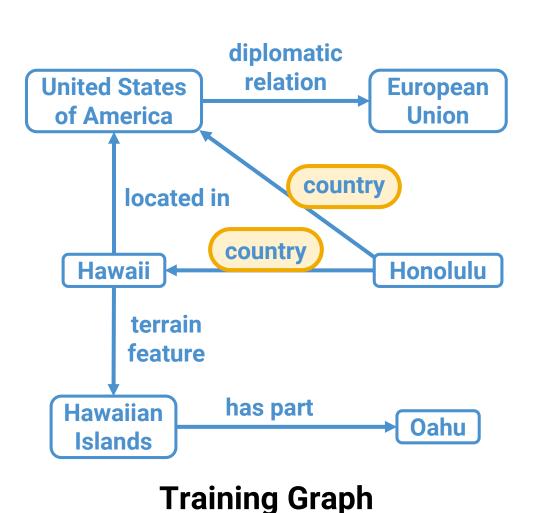
Existing Inductive Knowledge Graph Completion

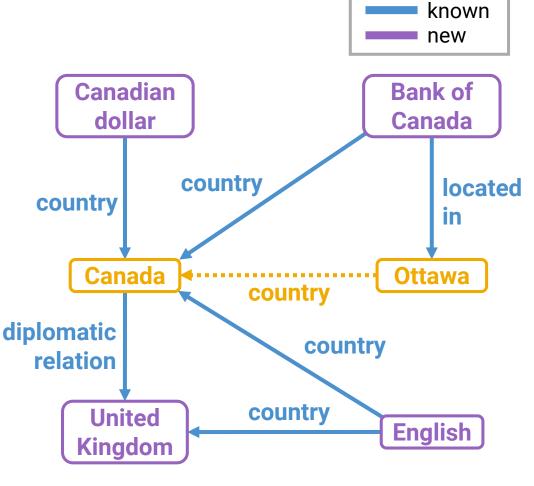




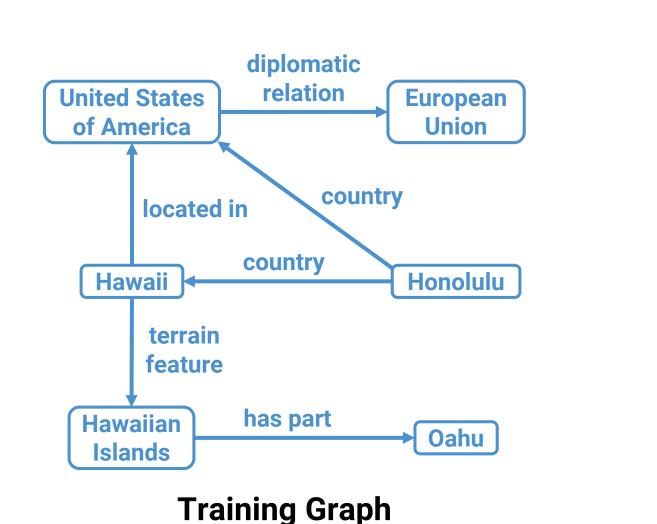
Inference Graph

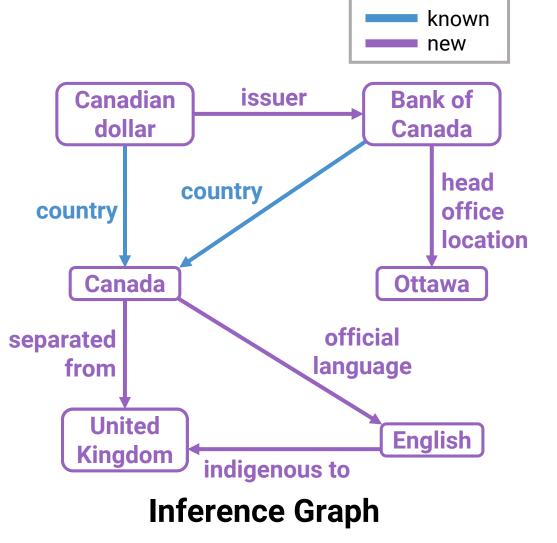
Transductive Inference for Relations

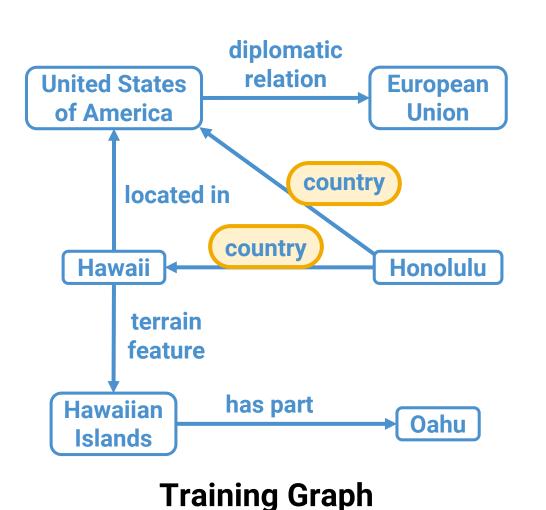


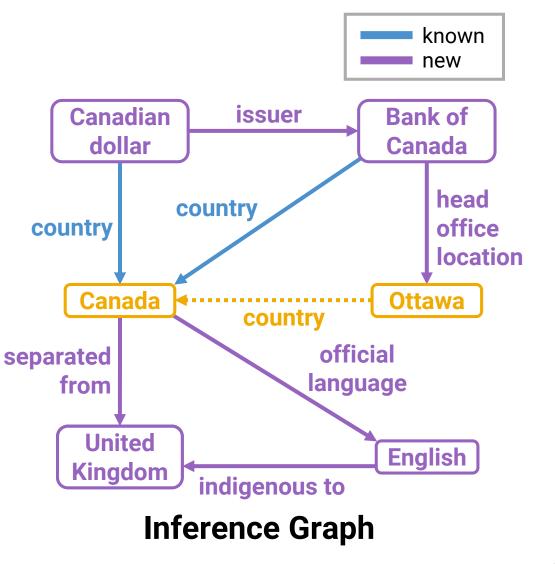


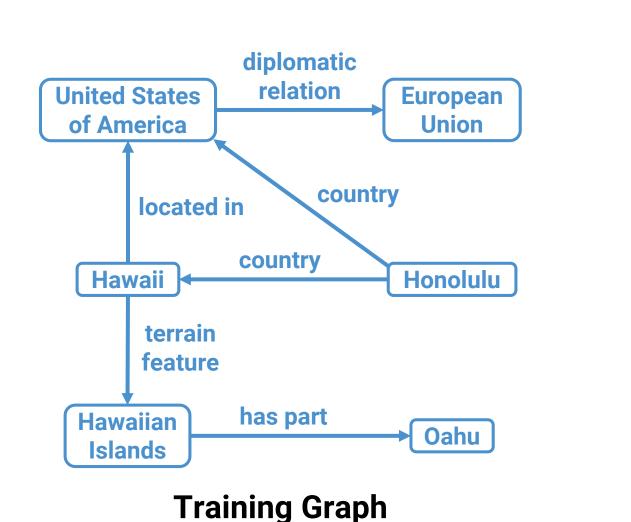
Inference Graph

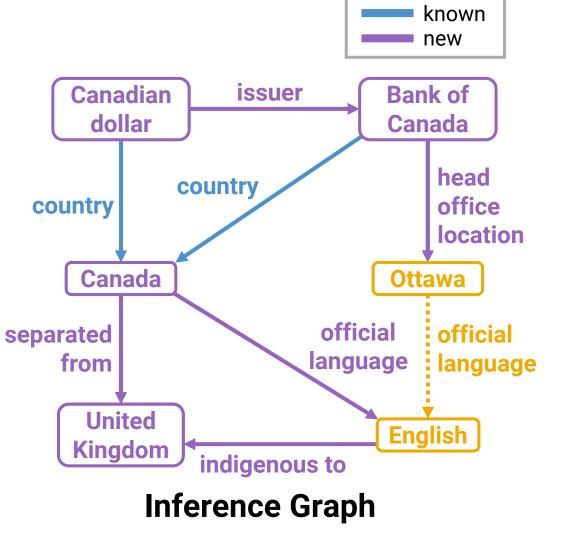


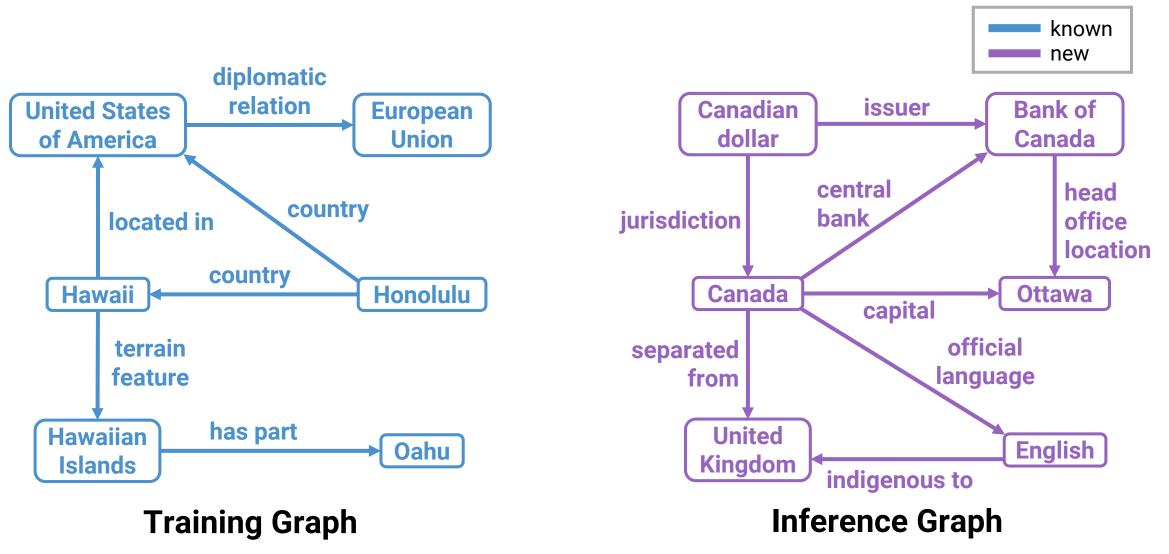


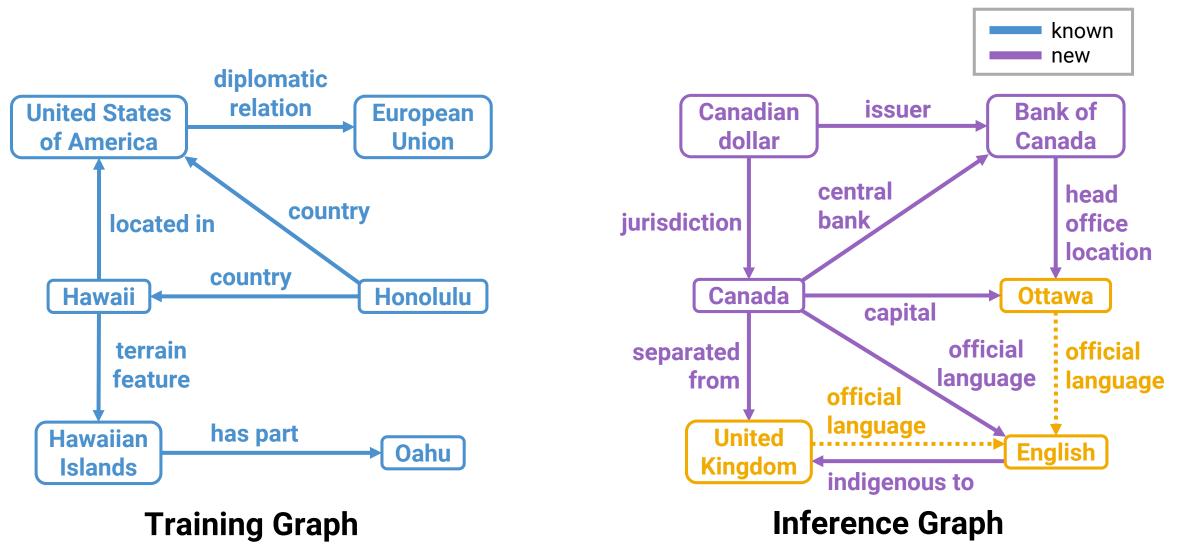






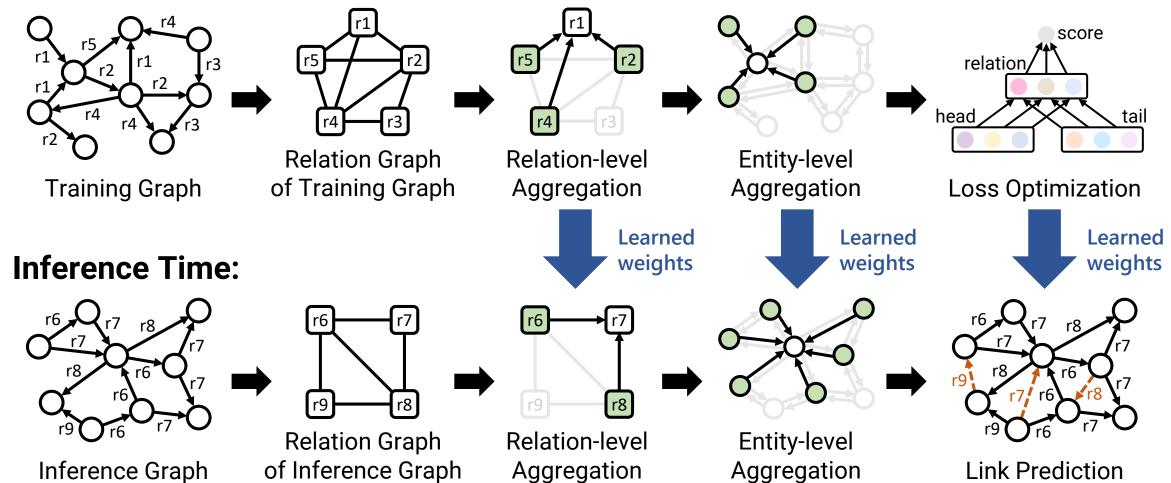


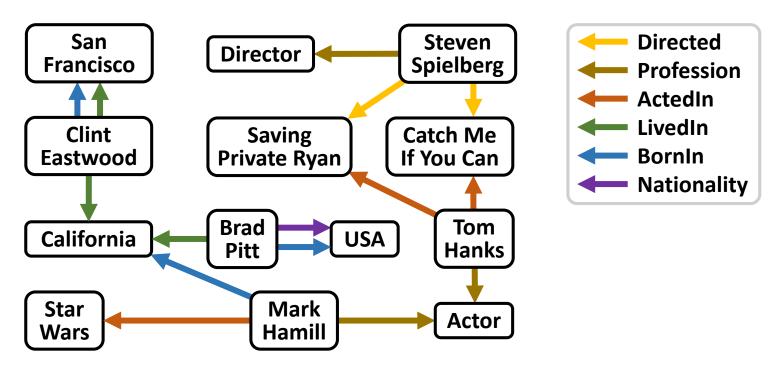




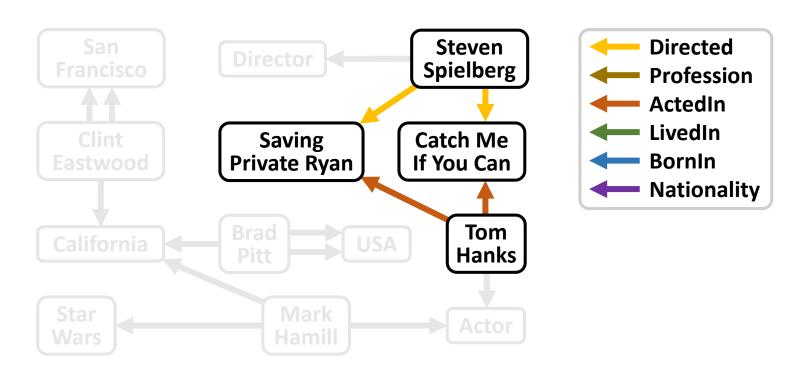
Overview

Training Time:

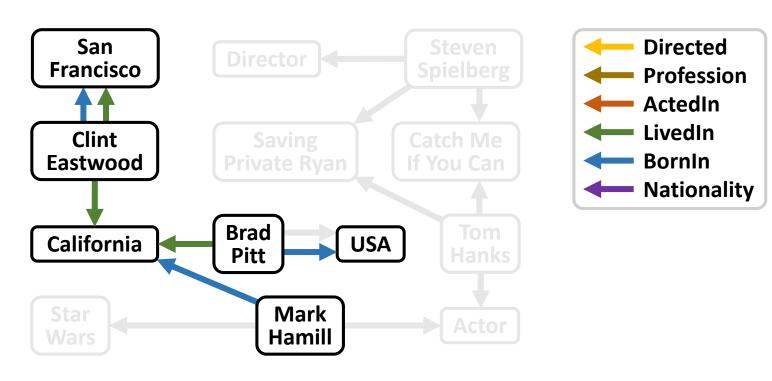




Knowledge Graph

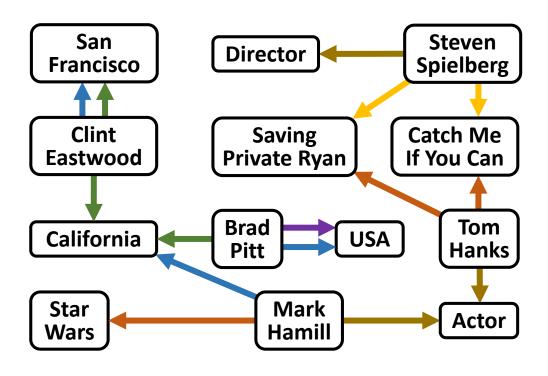


Knowledge Graph

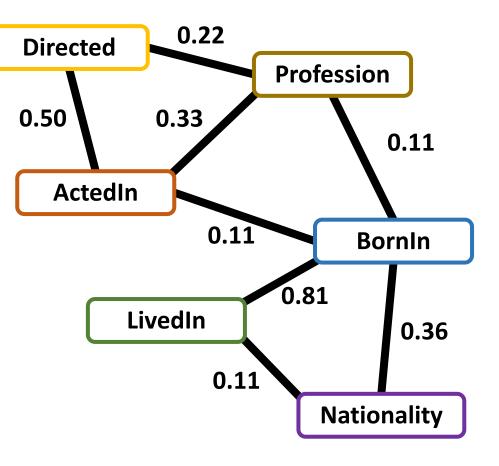


Knowledge Graph

$$\boldsymbol{A} = \boldsymbol{E}_h^{\mathsf{T}} \boldsymbol{D}_h^{-2} \boldsymbol{E}_h + \boldsymbol{E}_t^{\mathsf{T}} \boldsymbol{D}_t^{-2} \boldsymbol{E}_t$$

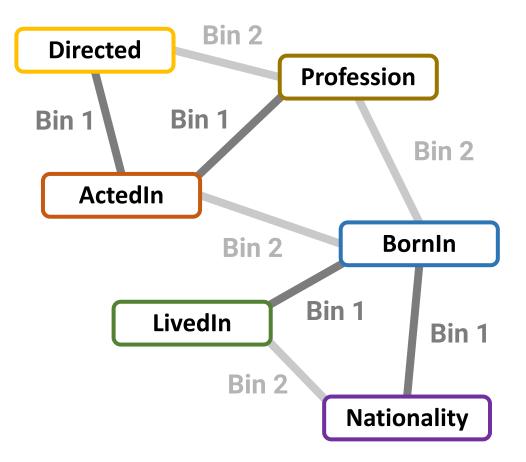


Knowledge Graph



Relation Graph

Relation Graph with Binning



Relation Graph with Binning

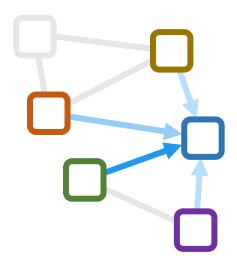
Relation Pairs	Weights	
(Bornln, LivedIn)	0.81	1
(ActedIn, Directed)	0.50	Bin 1
(BornIn, Nationality)	0.36	
(ActedIn, Profession)	0.33	
(Directed, Profession)	0.22	Bin 2
(ActedIn, BornIn)	0.11	
(BornIn, Profession)	0.11	
(LivedIn, Nationality)	0.11	

Relation Pairs Sorted by Weights

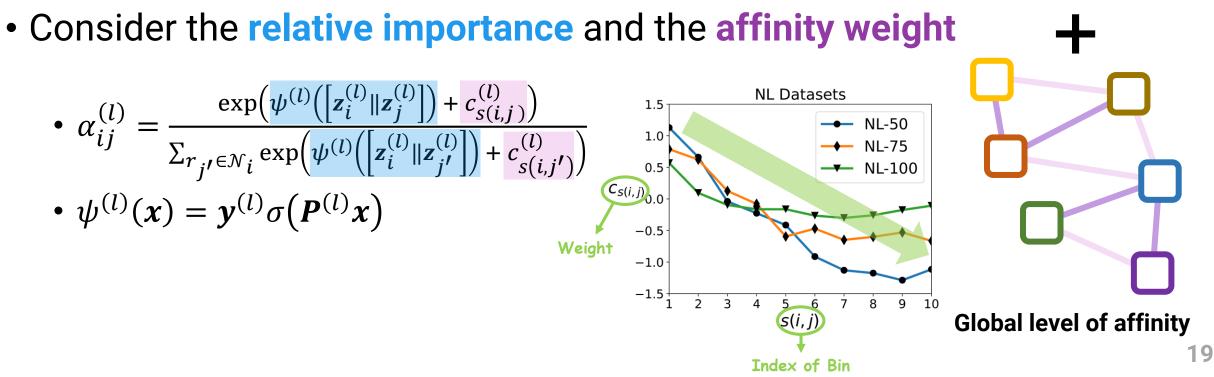
Relation-level Aggregation

Aggregate neighboring relations' embedding vectors

•
$$\mathbf{z}_i^{(l+1)} = \sigma \left(\sum_{r_j \in \mathcal{N}_i} \alpha_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{z}_j^{(l)} \right)$$



Local structure



Relation-level Aggregation

Aggregate neighboring relations' embedding vectors

•
$$\mathbf{z}_i^{(l+1)} = \sigma \left(\sum_{r_j \in \mathcal{N}_i} \alpha_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{z}_j^{(l)} \right)$$

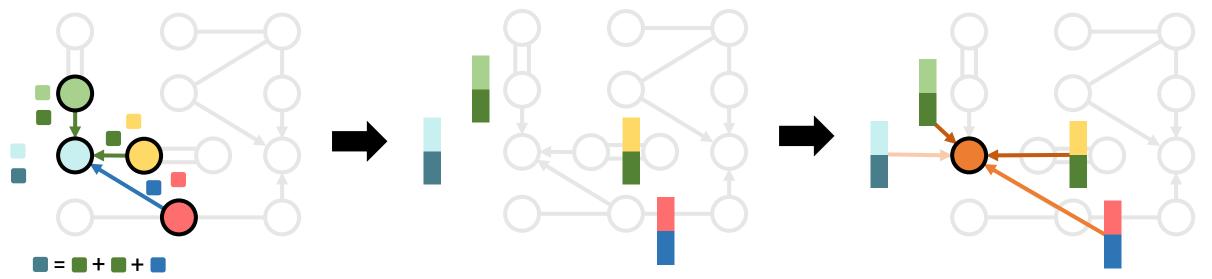
Consider the relative importance and the affinity weight

•
$$\alpha_{ij}^{(l)} = \frac{\exp(\psi^{(l)}([z_i^{(l)} || z_j^{(l)}]) + c_{s(i,j)}^{(l)})}{\sum_{r_{j'} \in \mathcal{N}_i} \exp(\psi^{(l)}([z_i^{(l)} || z_{j'}^{(l)}]) + c_{s(i,j')}^{(l)})}$$

• $\psi^{(l)}(x) = y^{(l)}\sigma(P^{(l)}x)$
Weight $u = \frac{1.5}{1.6}$

 Compute an entity embedding by considering its own vector, its neighbors' embeddings, and its adjacent relations

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left(\beta_{ii}^{(l)} \widehat{\boldsymbol{W}}^{(l)} \left[\boldsymbol{h}_{i}^{(l)} \| \overline{\boldsymbol{z}}_{i}^{(L)} \right] + \sum_{\boldsymbol{v}_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{\boldsymbol{r}_{k} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{\boldsymbol{W}}^{(l)} \left[\boldsymbol{h}_{j}^{(l)} \| \boldsymbol{z}_{k}^{(L)} \right] \right)$$



• Consider the entity itself and its adjacent relations

$$\begin{aligned} \mathbf{h}_{i}^{(l+1)} &= \sigma \left(\beta_{ii}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{i}^{(l)} \| \overline{\mathbf{z}}_{i}^{(L)} \right] + \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \\ \overline{\mathbf{z}}_{i}^{(L)} &= \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \frac{\mathbf{z}_{k}^{(L)}}{\sum_{v_{j'} \in \widehat{\mathcal{N}}_{i}} | \mathcal{R}_{j'i} |} \\ \beta_{ii}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{i}^{(l)} \| \overline{\mathbf{z}}_{k}^{(L)} \right] \right) \right) / \lambda \\ \beta_{ijk}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \right) / \lambda \end{aligned}$$

$$\widehat{\psi}^{(l)}(\boldsymbol{x}) = \widehat{\boldsymbol{y}}^{(l)} \sigma \left(\widehat{\boldsymbol{P}}^{(l)} \boldsymbol{x} \right)$$
$$\lambda = \exp\left(\psi^{(l)} \left(\left[\boldsymbol{h}_{i}^{(l)} \| \boldsymbol{h}_{i}^{(l)} \| \overline{\boldsymbol{z}}_{i}^{(L)} \right] \right) \right) + \sum_{v_{j'} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k'} \in \mathcal{R}_{j'i}} \exp\left(\psi^{(l)} \left(\left[\boldsymbol{h}_{i}^{(l)} \| \boldsymbol{h}_{j'}^{(l)} \| \boldsymbol{z}_{k'}^{(L)} \right] \right) \right)$$

Consider neighbors' embedding vectors and their adjacent relations

$$\begin{aligned} \mathbf{h}_{i}^{(l+1)} &= \sigma \left(\beta_{ii}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{i}^{(l)} \| \bar{z}_{i}^{(L)} \right] + \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \\ \bar{z}_{i}^{(L)} &= \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \frac{z_{k}^{(L)}}{\sum_{v_{j'} \in \widehat{\mathcal{N}}_{i}} | \mathcal{R}_{j'i} |} \\ \beta_{ii}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{i}^{(l)} \| \bar{z}_{i}^{(L)} \right] \right) \right) / \lambda \\ \beta_{ijk}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \right) / \lambda \end{aligned}$$

$$\widehat{\psi}^{(l)}(\mathbf{x}) &= \widehat{\mathbf{y}}^{(l)} \sigma(\widehat{\mathbf{p}}^{(l)} \mathbf{x}) \\ \lambda &= \exp \left(\widehat{\psi}^{(l)} (\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{i}^{(l)} \| \bar{z}_{i}^{(L)} \right] \right) \right) + \sum_{v_{j'} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k'} \in \mathcal{R}_{j'_{i}}} \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{j'}^{(l)} \| \bar{z}_{k'}^{(L)} \right] \right) \right) \right) \end{aligned}$$

• Consider the entity itself, its neighbors, and the relations

 $v_{i'} \in \hat{\mathcal{N}}_i r_{k'} \in \mathcal{R}_{i'i}$

$$\begin{aligned} \mathbf{h}_{i}^{(l+1)} &= \sigma \left(\beta_{ii}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{i}^{(l)} \| \mathbf{\bar{z}}_{i}^{(L)} \right] + \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \beta_{ijk}^{(l)} \widehat{W}^{(l)} \left[\mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \\ \overline{\mathbf{z}}_{i}^{(L)} &= \sum_{v_{j} \in \widehat{\mathcal{N}}_{i}} \sum_{r_{k} \in \mathcal{R}_{ji}} \frac{\mathbf{z}_{k}^{(L)}}{\sum_{v_{j'} \in \widehat{\mathcal{N}}_{i}} | \mathcal{R}_{j'i} |} \\ \beta_{ii}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{i}^{(l)} \| \mathbf{z}_{i}^{(L)} \right] \right) \right) / \lambda \\ \beta_{ijk}^{(l)} &= \exp \left(\widehat{\psi}^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{j}^{(l)} \| \mathbf{z}_{k}^{(L)} \right] \right) \right) / \lambda \end{aligned}$$

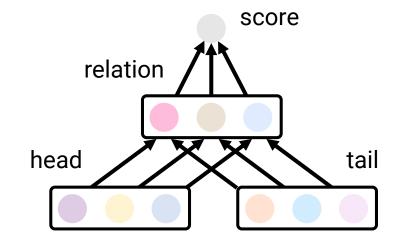
$$\widehat{\psi}^{(l)}(\mathbf{x}) &= \widehat{\mathbf{y}}^{(l)} \sigma(\widehat{\mathbf{P}}^{(l)} \mathbf{x}) \\ \lambda &= \exp \left(\psi^{(l)} (\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{i}^{(l)} \| \mathbf{z}_{i}^{(L)} \right] \right) + \sum_{v \in \widehat{\mathcal{N}}} \sum_{v \in \widehat{\mathcal{N}}_{i}} \exp \left(\psi^{(l)} \left(\left[\mathbf{h}_{i}^{(l)} \| \mathbf{h}_{j'}^{(l)} \| \mathbf{z}_{k'}^{(L)} \right] \right) \right) \end{aligned}$$

Modeling Relation-Entity Interactions

Final embedding vectors computation

$$m{z}_k = m{M}m{z}_k^{(L)}$$
 and $m{h}_i = \widehat{m{M}}m{h}_i^{(\widehat{L})}$

• Scoring function $f(v_i, r_k, v_j) = \boldsymbol{h}_i^{\mathsf{T}} \operatorname{diag}(\overline{\boldsymbol{W}} \boldsymbol{z}_k) \boldsymbol{h}_j$

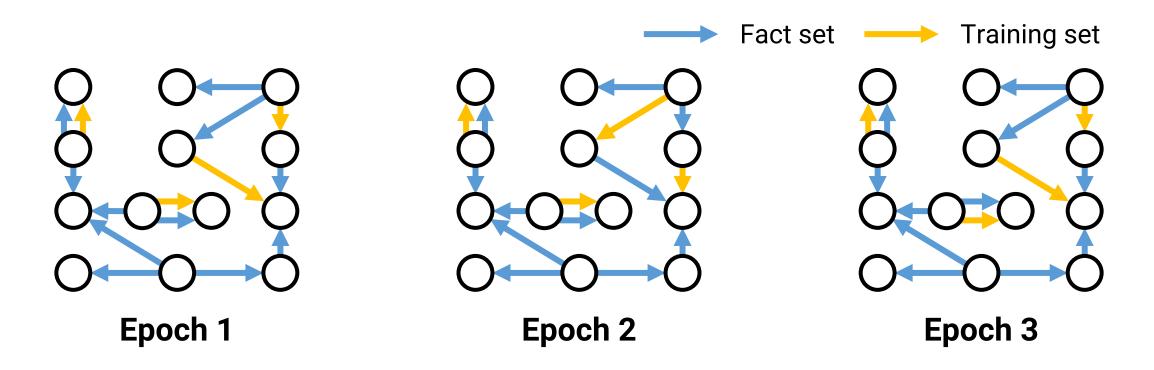


Loss

$$\sum_{(v_i, r_k, v_j) \in \mathcal{T}_{\mathrm{tr}}} \sum_{\stackrel{\circ}{(v_i, r_k, v_j) \in \mathcal{T}_{\mathrm{tr}}}} \max\left(0, \gamma - f(v_i, r_k, v_j) + f(\stackrel{\circ}{v_i, r_k, v_j})\right)$$

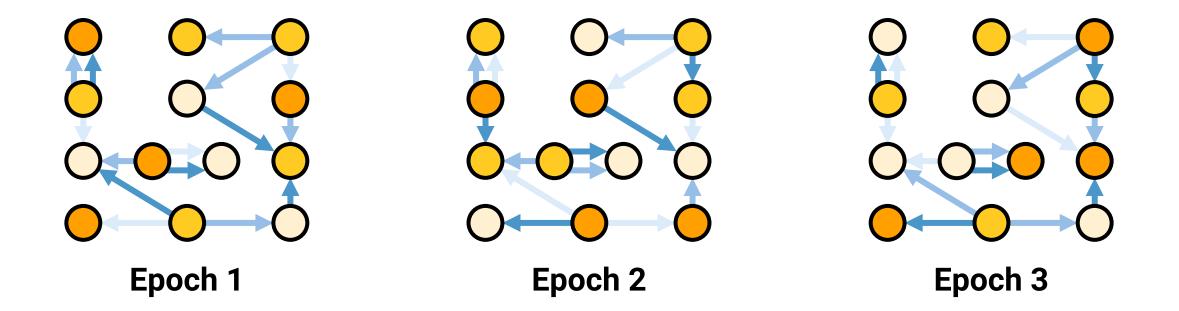
Dynamic split

- Randomly re-split the fact set and the training set
 - Fact set: used for aggregating neighboring embeddings
 - Training set: used for calculating the loss



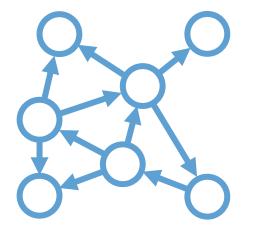
Re-initialization

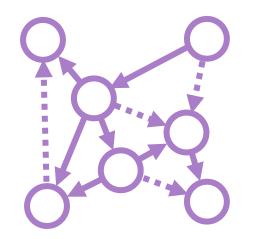
- Randomly re-initialize all feature vectors of entities and relations
 - Learns how to compute embedding vectors using random feature vectors
 - Related to the expressive power of GNNs



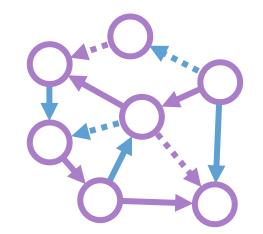
Experimental Results

- Datasets
 - Based on NELL, Wikidata, and Freebase
 - Create 13 real-world datasets with various inductive settings



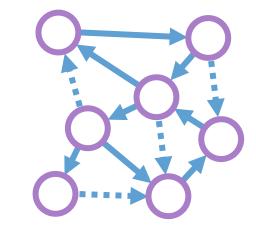


Inductive Inference for Relations



Semi-Inductive Inference

for Relations



Transductive Inference for Relations

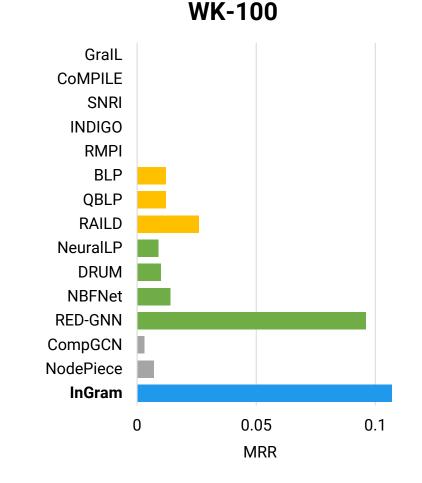
Experimental Results

- Datasets
 - Based on NELL, Wikidata, and Freebase
 - Create 13 real-world datasets with various inductive settings
- Comparison with 14 baselines
 - Subgraph sampling: GraIL, CoMPILE, SNRI, INDIGO, RMPI
 - BERT-based: BLP, QBLP, RAILD
 - Rule-based: NeuralLP, DRUM, NBFNet, RED-GNN
 - Others: CompGCN, NodePiece

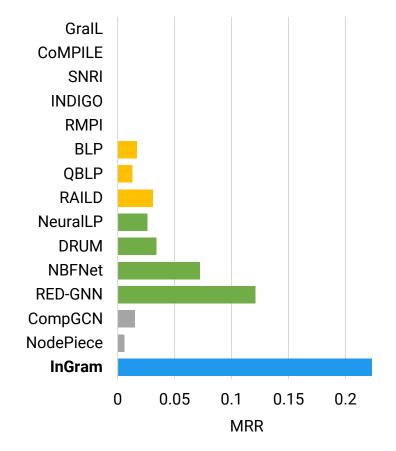
GralL CoMPILE SNRI INDIGO RMPI BLP OBLP RAILD NeuralLP DRUM NBFNet **RED-GNN** CompGCN NodePiece InGram 0.1 0.2 0.3 0

MRR

NL-100



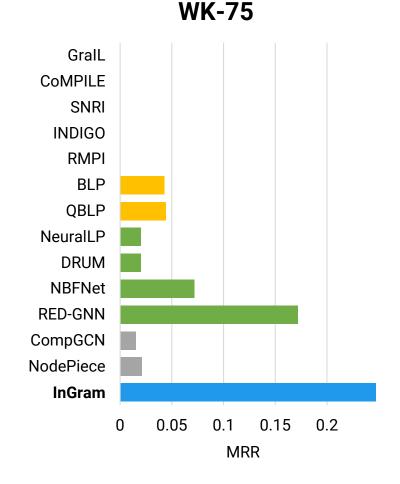
FB-100



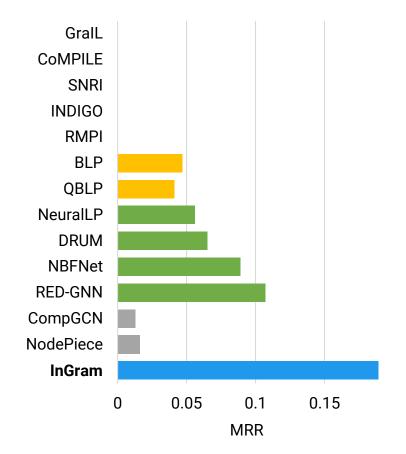
GralL CoMPILE SNRI INDIGO RMPI BLP OBLP NeuralLP DRUM NBFNet **RED-GNN** CompGCN NodePiece InGram 0.2 0.1 0

MRR

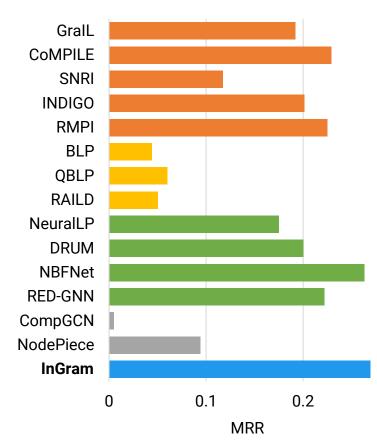
NL-75

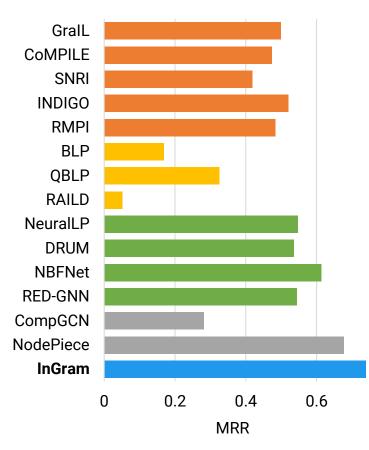


FB-75



Transductive Inference for Relations





NELL-995-v1

Conclusion

- Explore various inductive settings
- Define the **relation graph** to handle new relations at inference time
- Propose InGram, which learns to generate embeddings solely based on the structure of a given knowledge graph
- InGram significantly outperforms state-of-the-art methods for inductive, semi-inductive, and transductive inferences for relations

Our datasets and codes are available at:

https://github.com/bdi-lab/InGram

You can find us at:

{jjlee98, chanyoung.chung, jjwhang}@kaist.ac.kr https://bdi-lab.kaist.ac.kr

