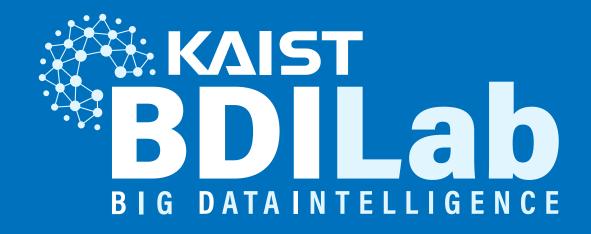
Unveiling the Threat of Fraud Gangs to Graph Neural Networks: Multi-Target Graph Injection Attacks Against GNN-Based Fraud Detectors

Jinhyeok Choi, Heehyeon Kim, and Joyce Jiyoung Whang*

* Corresponding Author School of Computing, KAIST

The 39th AAAI Conference on Artificial Intelligence (AAAI 2025)

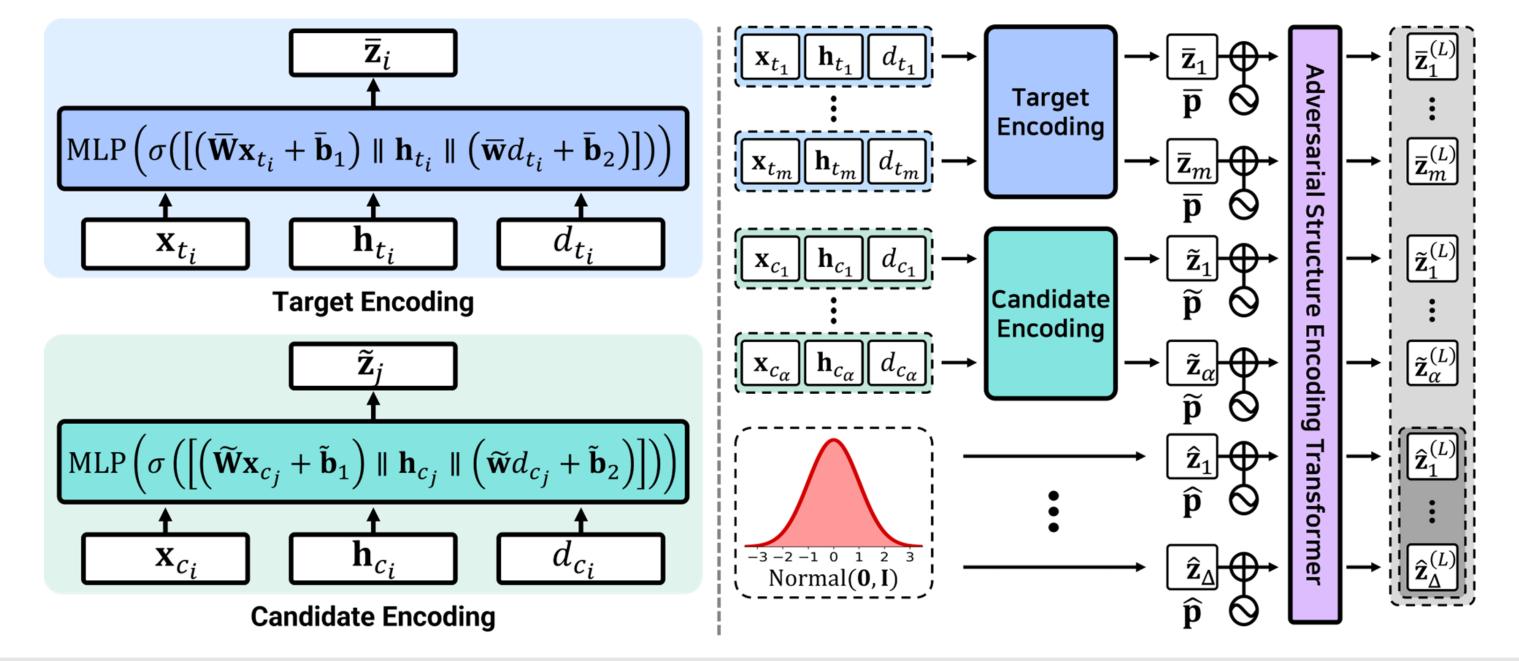


Main Contributions

- Investigate adversarial attacks on GNN-based fraud detectors by fraud gangs
 - First study on graph injection attacks for multiple target nodes organized by groups based on metadata or relations in real-world graphs.
- Propose Multi-target one-Time graph injection attack model (MonTi)
 - Allocate adaptive degree budgets and inject all attack nodes at once.
 - Capture interdependencies between node attributes and edges.
- MonTi outperforms state-of-the-art graph injection attack methods in both multi- and single target settings on real-world graphs.

Adversarial Structure Encoding

- Adversarial Structure Encoding Transformer
 - Compute the intermediate representations for attribute and edge generation using raw attributes, representations, and degree information as input.



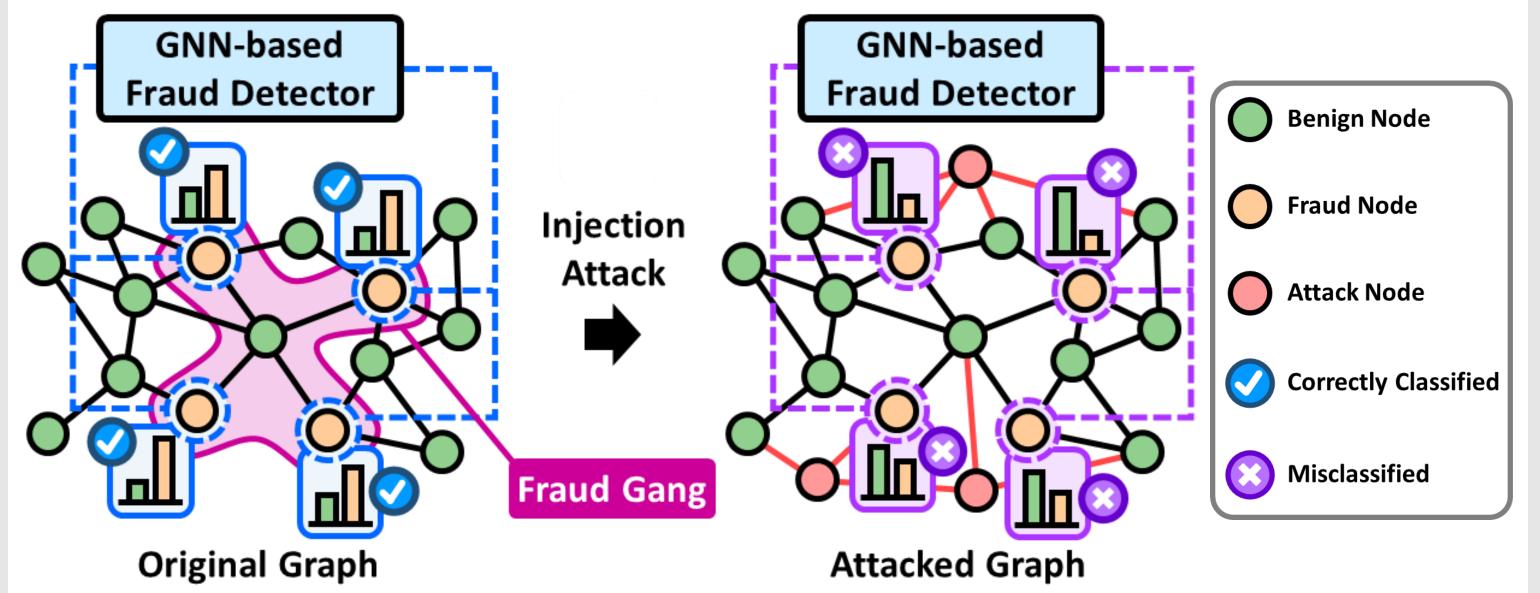
GNN-Based Fraud Detection and Fraud Gangs

• Fraud Detection with GNNs

- Interactions of fraudsters can be effectively modeled with graphs.
 - Nodes represent distinct entities such as news, reviews, and claims.
 - Edges represent relationships between entities.
- Fraud Gangs with Collusive Patterns
 - Frauds are increasingly organized into gangs or groups to carry out fraudulent activities more effectively with reduced risk.
 - e.g., Fraudsters can spread misinformation by using multiple fake accounts.

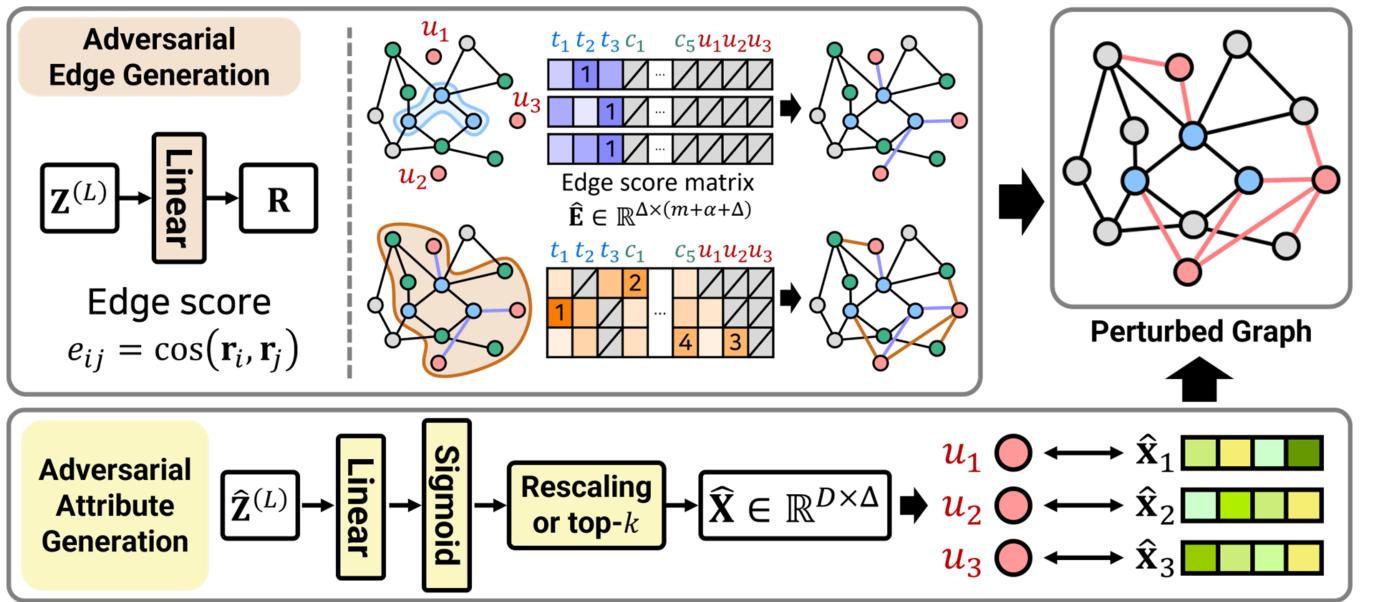
Attack Scenarios: Multi-Target Graph Injection Attack

- Adversarial Attacks against GNN-Based Fraud Detectors
 - Design the attack scenarios where fraud gangs attack GNN-based fraud detectors to make them misclassify the fraud nodes as benign.



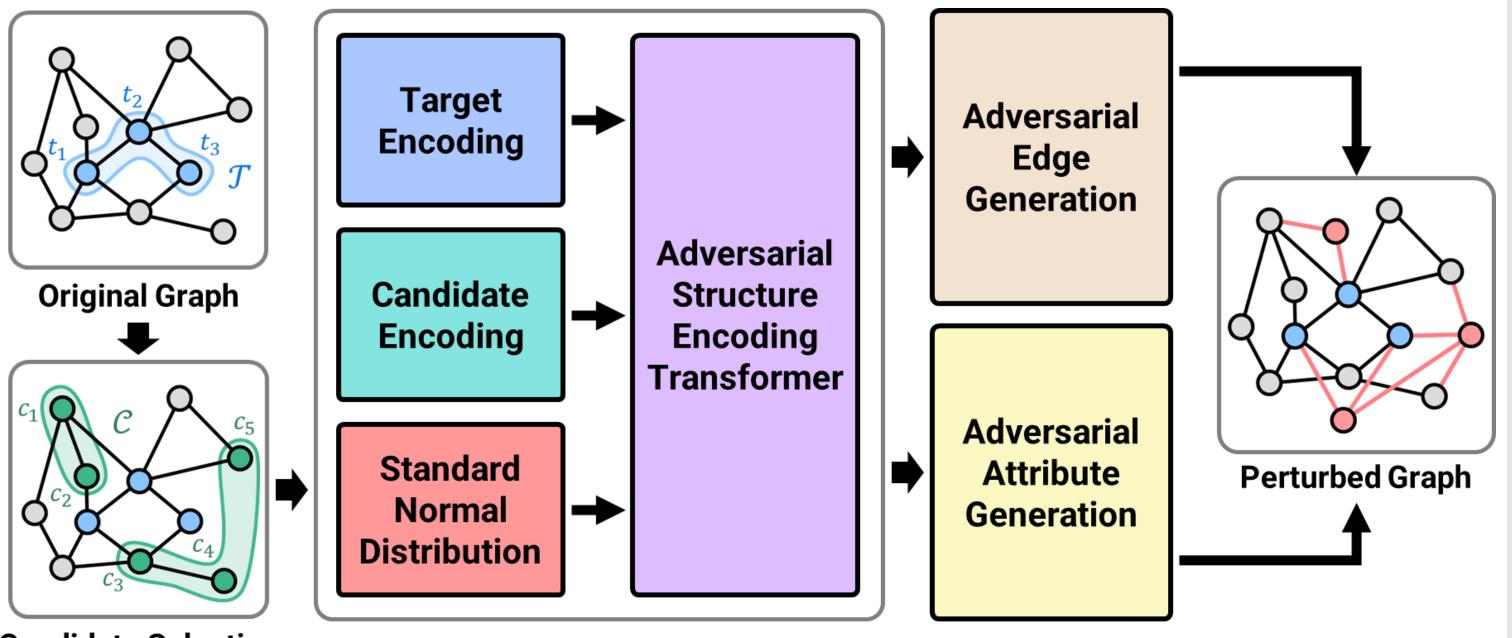
One-Time Graph Injection

- Adversarial Attribute and Edge Generation
 - Generate edges by projecting the representation into the edge score space.
 - Generate attributes with rescaling or top-k selection based on attribute type.



- Black-Box Graph Injection Evasion Attack
 - A feasible approach that does not require access to modify existing structures.
 - The attacker can access only the original graph, partial labels, and a surrogate model, and the attack occurs during the inference phase.
- Limitations of Existing Graph Injection Attack Methods
 - Inject attack nodes sequentially, fixing the graph structure at each step.
 - Sequentially generate attributes and edges of attack nodes.

MonTi: Multi-Target One-Time Graph Injection Attack Model



Experiments

- Surrogate / Victim Models: GCN, GraphSAGE, GAT, CARE-GNN, PC-GNN, GAGA
- Attack Baselines: G-NIA(CIKM'21), TDGIA(KDD'21), Cluster Attack(IJCAI'22), G²A2C(AAAI'23)
- Evaluation Metric: Average misclassification rates (%) of target sets
- Multi-Target Attack Performance on Real-World Fraud Graphs

When GCN is the Surrogate Model

		CARE-GNN	PC-GNN	GAGA
	Clean	48.02	55.62	21.68
GossipCop-S	Best-baseline	60.67	66.25	25.76
	MonTi	88.40	89.36	41.34
	Clean 29.79	29.79	59.13	28.00
YelpChi	Best-baseline	34.81	63.57	28.83
	MonTi	55.59	97.21	29.63
	Clean	16.42	16.17	15.68
Lifelns	Best-baseline	18.34	20.08	23.38
	MonTi	18.63	19.78	27.25

Where the Types of Surrogate and Victim Models are the Same

		GCN	GraphSAGE	GAT	CARE-GNN	PC-GNN	GAGA
GossipCop- S	Clean	46.70	26.04	11.29	48.02	55.62	21.68
	Best-baseline	75.12	67.70	63.21	59.96	62.60	25.69
	MonTi	92.60	97.05	94.30	90.15	90.12	46.94
YelpChi	Clean	87.14	43.81	35.15	29.79	59.13	28.00
	Best-baseline	90.93	64.56	55.51	32.45	63.18	31.08
	MonTi	92.23	65.31	93.27	31.92	69.93	37.66
	Clean	27.72	13.70	16.75	16.42	16.17	15.68

Candidate Selection

- Candidate Selection with Learnable Scoring Function
 - Select candidate nodes to narrow the search space with scoring function.
- Adversarial Structure Encoding to handle Interdependencies
 - Capture interdependencies among all nodes involved in the attack.
- One-Time Graph Injection with Intermediate Representations
 - Generate attributes and edges of attack nodes at once.

Lifelns	Best-baseline	83.28	37.80	96.60	18.05	17.90	16.87
	MonTi	99.47	60.97	100.00	26.80	20.64	

Qualitative Analysis

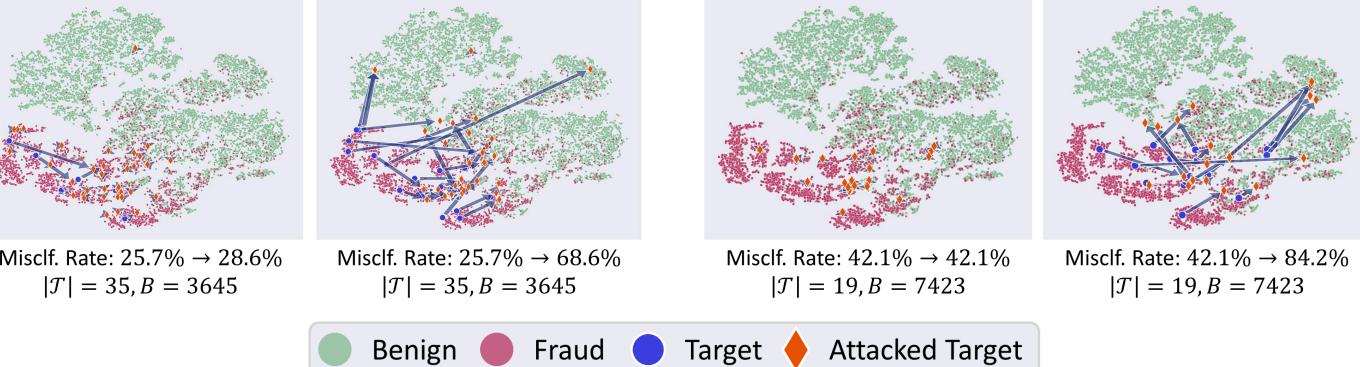
Effects of the Size of Fraud Gangs

MonTi significantly shifts the representations from the fraud to the benign area.

G-NIA / GAGA / GossipCop-S MonTi / GAGA / GossipCop-S

G-NIA / GAGA / GossipCop-S

MonTi / GAGA / GossipCop-S



GitHub: https://github.com/bdi-lab/MonTi | Lab Homepage: https://bdi-lab.kaist.ac.kr