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01 Fraud Detection with GNNs

• Complex interactions of fraudsters can be effectively modeled using graphs

• Frauds are typically represented as nodes corresponding to individuals with malicious intentions.

• Various tailored GNNs have recently been introduced to filter the camouflaged fraudsters

• e.g., CARE-GNN (CIKM 2020), PC-GNN (TheWebConf 2021), GAGA (TheWebConf 2023)

• Vulnerabilities of the GNN-based fraud detectors to adversarial attacks remain unexplored

• Frauds are increasingly organized into gangs or groups

• Fake news: fraudsters can spread misinformation by using multiple fake accounts

• Spam reviews: fraudsters could create multiple fake reviews using different IDs

• Medical insurance frauds: fraudsters may collaborate with doctors or insurance agents to obtain fake diagnoses

• Define the adversarial attack on GNN-based fraud detectors as a multi-target graph injection attack

• Nodes represent distinct entities such as news, reviews, and claims, and edges represent their relationships
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01 Attack Scenarios

• Adopt a graph injection attack, as it is more feasible than a graph modification attack, which 

requires privileged access to alter existing structures

• Consider a black-box evasion attack to conduct attacks in the most realistic setting

• Black-box attack: the attacker can access only the original graph, partial labels, and a surrogate model

• Evasion attack: the attack occurs during the victim model’s inference phase
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01 Limitations of Existing Methods

• Inject multiple attack nodes sequentially, fixing the graph structure at each step

• Limits their flexibility and efficiency in exploring diverse structures, as it requires to fix the degree 

budget across all attack nodes due to a lack of information about future steps

• Focus on single-target or single injection attacks, and often overlook interactions within target 

nodes and among attack nodes

• Sequentially generate attributes and edges of attack nodes, considering only one-way dependency
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01 Contributions

• Investigate adversarial attacks against GNN-based fraud detectors by fraud gangs

• First study on graph injection attacks against GNN-based fraud detectors

• First study on graph injection attacks for multiple target nodes organized by groups

• Create datasets and target sets grouped based on metadata or relations in real-world graphs

• Propose MonTi, a transformer-based Multi-target one-Time graph injection attack model

• Flexible and efficient attacks by adaptively allocating degree budgets and injecting all attack nodes at once

• Capture interdependencies between node attributes and edges

• Consider interactions within target nodes and among attack nodes

• MonTi substantially outperforms state-of-the-art graph injection attack methods in both multi-

and single-target settings on real-world graphs
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02 GNN-Based Fraud Detectors

An undirected attributed graph 𝐺 = 𝒱, ℰ,𝒳

• 𝒱 is a set of 𝑛 nodes, ℰ ⊂ 𝒱 × 𝒱 is a set of edges, 𝒳 is a set of node attribute vectors

• 𝐱𝑣 ∈ ℝ𝐷 represents the attribute vector of a node 𝑣 ∈ 𝒱

• 𝒴 denotes a set of node labels

• 𝑦𝑣 ∈ {0,1} represents the label of a node 𝑣 ∈ 𝒱 where 𝑦𝑣 = 1 indicates 𝑣 is a fraud node

A GNN-based fraud detector 𝑓𝜃 ⋅

• 𝜃 indicates learnable parameters

• The fraud score vector 𝐬𝑣 = 𝑓𝜃 𝐺, 𝑣 = MLP Φ 𝐺, 𝑣 ∈ ℝ2

• Φ ⋅ denote a GNN encoder

• The predicted label ො𝑦𝑣 = arg max𝑖 𝑠𝑣,𝑖 ∈ 0,1

• 𝑠𝑣,𝑖 denotes the 𝑖-th element of 𝐬𝑣
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02 Multi-Target Graph Injection Attacks

A graph injection attack injects attack nodes 𝒱in with attributes 𝒳in and edges ℰin into a graph 𝐺

• The perturbed graph 𝐺′ = 𝒱′, ℰ′, 𝒳′

• 𝒱′ = 𝒱 ∪ 𝒱in, ℰ′ = ℰ ∪ ℰin , 𝒳′ = 𝒳 ∪𝒳in where ℰin ⊂ 𝒱′ × 𝒱′ ∖ 𝒱 × 𝒱

• Does not modify existing nodes and edges

The multi-target graph injection attack against a GNN-based fraud detector

• Target set 𝒯 ⊂ 𝒱 consisting of fraud nodes

• The objective function

min
𝐺′

෍

𝑡∈𝒯

𝕀 argmax
𝑖

𝑠𝑡,𝑖
′ = 𝑦𝑡 s. t. 𝒱in ≤ Δ, ℰin ≤ 𝜂

• 𝐬𝑣
′ = 𝑓𝜃∗ 𝐺

′, 𝑣  where 𝜃∗ = argmin𝜃 ℒtrain 𝑓𝜃 , 𝐺, 𝒟 , ℒtrain is a training loss of 𝑓𝜃 ⋅ , and 𝒟 ⊂ 𝒴 is a training label set
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03 MonTi: Multi-Target One-Time Graph Injection Attack Model

Overview of MonTi
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03 Candidate Selection

Three types of contexts that affect multi-target graph injection attacks

• Target nodes 𝒯 = 𝑡1, ⋯ , 𝑡𝑚 , Candidate nodes 𝒞 = 𝑐1, ⋯ , 𝑐𝛼 ⊂ 𝒩 𝐾 , and Attack nodes 𝒱in = {𝑢1, ⋯ , 𝑢Δ}

• 𝒩 𝐾 is a set of 𝐾-hop neighbors of the target nodes, excluding the target nodes themselves

A learnable candidate scoring function 𝒥 ⋅

• 𝒩 𝐾 can drastically increase depending on the target nodes

• If 𝒩 𝐾 > 𝑛𝑐, MonTi selects top-𝑛𝑐 candidate nodes with 𝒥 ⋅

• 𝒥 𝐺, 𝑣 = MLP 𝜎 𝐪𝑣 ∥ 𝐦𝑣 ∥ 𝐡𝑣 ∥ 𝐡𝒯 ∈ ℝ

• 𝐪𝑣 = MLP 𝐱𝑣 ∈ ℝ𝐷𝐻 and 𝐦𝑣 = MLP 𝑑𝑣 ∥ 𝛽𝑣 ∈ ℝ𝐷𝐻

• 𝑑𝑣 is the degree of node 𝑣 and 𝛽𝑣 is the number of target nodes directly connected to node 𝑣

• 𝐡𝑣 ∈ ℝ𝐷𝐻 is a representation of node 𝑣 computed by a pretrained surrogate GNN and 𝐡𝒯 = READOUT 𝐡𝑡|𝑡 ∈ 𝒯 ∈ ℝ𝐷𝐻

• Otherwise, all nodes in 𝒩 𝐾 are considered as candidate nodes
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03 Adversarial Structure Encoding
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03 One-Time Graph Injection
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03 Training of MonTi

Straight-through Gumbel-top-𝒌

• To solve the optimization problems of discrete selection in MonTi, we adopt the Gumbel-Top-k technique 

coupled with the straight-through estimator

• Candidate Selection, Adversarial Edge Generation, Adversarial Attribute Generation for discrete attributes

Loss function

• Following the previous works in graph injection attacks define the loss function based on C&W loss

min
𝐺′

ℒ 𝑓𝜃∗ , 𝐺
′, 𝒯 =

1

𝒯
σ𝑡∈𝒯max 𝑠𝑡,1

′ − 𝑠𝑡,0
′ , 0 where 𝐬𝑡

′ = 𝑓𝜃∗ 𝐺
′, 𝑡 ∈ ℝ2

• Focus on increasing normal scores and decreasing fraud scores of target nodes to align with our scenarios.

• The loss is calculated using a surrogate model (black-box attack)
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04 Experiments

Datasets

• Create 3 real-world datasets for multi-target graph injection attacks

• GossipCop-S, YelpChi, LifeIns

• Create the training, validation, and test target sets with fraud nodes belonging to each split

• Each target set represents a fraud gang organized based on metadata or relations in each dataset

• GossipCop-S: Fake news articles tweeted by the same user 

• YelpChi: Fake reviews of the same user or the fake reviews for the same product within the same month

• LifeIns: Fraudulent insurance claims grouped based on relationships predefined by domain experts
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𝒱 #Frauds #Target Sets ℰ 𝐷 Feature Type

GossipCop-S 16,488 3,898 2,438 3,865,058 768 Continuous

YelpChi 45,900 6,656 1,435 3,846,910 32 Continuous

LifeIns 122,792 1,264 380 912,833 1,611 Discrete



04 Experiments

Surrogate and Victim Models

• Vanilla GNNs: GCN (ICLR 2017), GraphSAGE (NIPS 2017), GAT (ICLR 2018)

• GNN-based fraud detectors: CARE-GNN (CIKM 2020), PC-GNN (TheWebConf 2021), GAGA (TheWebConf 2023)

• Train all the methods with two different initialization seeds

• The models initialized with the first seed serve as surrogate models and the others are employed as victim models

Attack Baselines

• Black-box graph injection evasion attack methods: 

• G-NIA (CIKM 2021), TDGIA (KDD 2021), Cluster Attack (IJCAI 2022), G2A2C (AAAI 2023)

Evaluation Metric

• Average misclassification rates (%) of all target sets weighted by their sizes
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04 Experiments

Budgets

• Due to the diverse sizes and substructures of target sets, node and edge budgets should be allocated 

according to the characteristics of each target set.

• Impose limits on the budgets since excessively large budgets can lead to highly noticeable and easy attacks

• Node budget: Δ = max 𝜌 ⋅ min 𝐵, ത𝐵 + 0.5 , 1 where 𝜌 is a parameter to control node budget

• 𝐵 ≔ 𝒩 1 ∪ 𝒯 , ത𝐵 is the average value of 𝐵 across all target sets within the dataset

• Edge budget: 𝜂 = Δ ⋅ max min 𝑑𝒯 , 𝜉 ⋅ ҧ𝑑 + 0.5 , 1 where 𝜉 is a parameter to control edge budget

• 𝑑𝒯 is the average node degree of the target set, ҧ𝑑 is the average node degree of all nodes in the graph

• We set 𝜌 = 0.05, 𝜉 = 0.1 for GossipCop-S, 𝜌 = 0.05, 𝜉 = 0.5 for YelpChi, and 𝜌 = 0.2, 𝜉 = 0.5 for LifeIns
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04 Multi-Target Attack Performance
Misclassification rates (%) on GossipCop-S when the types of surrogate and victim models are the same
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04 Multi-Target Attack Performance
Misclassification rates (%) on YelpChi when the types of surrogate and victim models are the same
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04 Multi-Target Attack Performance
Misclassification rates (%) on LifeIns when the types of surrogate and victim models are the same
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04 Multi-Target Attack Performance

Misclassification rates (%) on GossipCop-S when GCN is the surrogate model
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04 Multi-Target Attack Performance

Misclassification rates (%) on YelpChi when GCN is the surrogate model
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04 Multi-Target Attack Performance

Misclassification rates (%) on LifeIns when GCN is the surrogate model

KAIST Big Data Intelligence Lab 21

15 16 17 18 19

MonTi

G²A2C

Cluster Attack

TDGIA

G-NIA

Clean

CARE-GNN

N/A

11 13 15 17 19 21

MonTi

G²A2C

Cluster Attack

TDGIA

G-NIA

Clean

PC-GNN

N/A

13 16 19 22 25 28

MonTi

G²A2C

Cluster Attack

TDGIA

G-NIA

Clean

GAGA

OOM

N/A



04 Case Study: Effects of the Size of Fraud Gangs

Categorize target sets into three groups based on 𝐵 ≔ 𝒩 1 ∪ 𝒯

• On GossipCop-S using GCN as the surrogate model

• 𝐵 reflects the size of the fraud gang
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04 Case Study: Effects of the Size of Fraud Gangs

Visualize the latent representations of target nodes computed by GAGA before and after the attack

• On GossipCop-S using GCN as the surrogate model and focusing target sets with 𝐵 > 1000

• MonTi significantly shifts the representations from the fraud to the benign area
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04 Single-Target Attack Performance

On OGB-Prod and PubMed with GCN as the surrogate and victim models (Δ = 1, 𝜂 = 1)

• Despite not being specifically designed for single-target attacks, MonTi outperforms all baselines
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05 Conclusion

• Multi-target graph injection attacks against GNN-based fraud detectors with practical scenarios

• First study to explore adversarial attacks against GNN-based fraud detectors and graph injection attacks for 

multiple target nodes formed by fraud gangs

• Proposed method MonTi achieves flexible and efficient attacks by adaptively allocating the 

degree budget for each attack node and injecting all attack nodes at once

• MonTi effectively captures interdependencies between node attributes and edges, as well as 

interactions within target nodes and among attack nodes

• MonTi significantly outperforms state-of-the-art graph injection attack methods
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Thank You!

Our datasets and codes are available at:

https://github.com/bdi-lab/MonTi

You can find us at:

{cjh0507, heehyeon, jjwhang}@kaist.ac.kr

https://bdi-lab.kaist.ac.kr

▲  GitHub ▲  BDILab

https://github.com/bdi-lab/MonTi
https://bdi-lab.kaist.ac.kr/
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