Unveiling the Threat of Fraud Gangs to Graph Neural Networks: Multi-Target Graph Injection Attacks Against GNN-Based Fraud Detectors

Jinhyeok Choi, Heehyeon Kim, and Joyce Jiyoung Whang* School of Computing, KAIST * Corresponding Author

The 39th AAAI Conference on Artificial Intelligence (AAAI 2025)

01 Fraud Detection with GNNs

- Complex interactions of fraudsters can be effectively modeled using graphs
 - Frauds are typically represented as nodes corresponding to individuals with malicious intentions.
- Various tailored GNNs have recently been introduced to filter the camouflaged fraudsters
 - e.g., CARE-GNN (CIKM 2020), PC-GNN (TheWebConf 2021), GAGA (TheWebConf 2023)
- Vulnerabilities of the GNN-based fraud detectors to adversarial attacks remain unexplored
- Frauds are increasingly organized into gangs or groups
 - Fake news: fraudsters can spread misinformation by using multiple fake accounts
 - Spam reviews: fraudsters could create multiple fake reviews using different IDs
 - Medical insurance frauds: fraudsters may collaborate with doctors or insurance agents to obtain fake diagnoses
- Define the adversarial attack on GNN-based fraud detectors as a multi-target graph injection attack
 - Nodes represent distinct entities such as news, reviews, and claims, and edges represent their relationships

01 Attack Scenarios

- Adopt a graph injection attack, as it is more feasible than a graph modification attack, which requires privileged access to alter existing structures
- Consider a **black-box evasion** attack to conduct attacks in the most realistic setting
 - Black-box attack: the attacker can access only the original graph, partial labels, and a surrogate model
 - Evasion attack: the attack occurs during the victim model's inference phase

01 Limitations of Existing Methods

- Inject multiple attack nodes sequentially, fixing the graph structure at each step
 - Limits their flexibility and efficiency in exploring diverse structures, as it requires to fix the degree budget across all attack nodes due to a lack of information about future steps
- Focus on single-target or single injection attacks, and often overlook interactions within target nodes and among attack nodes

• Sequentially generate attributes and edges of attack nodes, considering only one-way dependency

01 Contributions

- Investigate adversarial attacks against GNN-based fraud detectors by fraud gangs
 - First study on graph injection attacks against GNN-based fraud detectors
 - First study on graph injection attacks for multiple target nodes organized by groups
 - Create datasets and target sets grouped based on metadata or relations in real-world graphs
- Propose MonTi, a transformer-based Multi-target one-Time graph injection attack model
 - Flexible and efficient attacks by adaptively allocating degree budgets and injecting all attack nodes at once
 - Capture interdependencies between node attributes and edges
 - Consider interactions within target nodes and among attack nodes
- MonTi substantially outperforms state-of-the-art graph injection attack methods in both multiand single-target settings on real-world graphs

O2 GNN-Based Fraud Detectors

An undirected attributed graph $G = (\mathcal{V}, \mathcal{E}, \mathcal{X})$

- \mathcal{V} is a set of *n* nodes, $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ is a set of edges, \mathcal{X} is a set of node attribute vectors
 - $\mathbf{x}_{v} \in \mathbb{R}^{D}$ represents the attribute vector of a node $v \in \mathcal{V}$
- $\ensuremath{\mathcal{Y}}$ denotes a set of node labels
 - $y_v \in \{0,1\}$ represents the label of a node $v \in V$ where $y_v = 1$ indicates v is a fraud node

A GNN-based fraud detector $f_{\theta}(\cdot)$

- θ indicates learnable parameters
- The fraud score vector $\mathbf{s}_v = f_{\theta}(G, v) = MLP(\Phi(G, v)) \in \mathbb{R}^2$
 - $\Phi(\cdot)$ denote a GNN encoder
- The **predicted label** $\hat{y}_v = \arg \max_i s_{v,i} \in \{0,1\}$
 - $s_{v,i}$ denotes the *i*-th element of \mathbf{s}_v

02 Multi-Target Graph Injection Attacks

A graph injection attack injects attack nodes V_{in} with attributes X_{in} and edges \mathcal{E}_{in} into a graph G

- The perturbed graph $G' = (\mathcal{V}', \mathcal{E}', \mathcal{X}')$
 - $\mathcal{V}' = \mathcal{V} \cup \mathcal{V}_{in}, \mathcal{E}' = \mathcal{E} \cup \mathcal{E}_{in}, \mathcal{X}' = \mathcal{X} \cup \mathcal{X}_{in} \text{ where } \mathcal{E}_{in} \subset (\mathcal{V}' \times \mathcal{V}') \setminus (\mathcal{V} \times \mathcal{V})$
 - Does not modify existing nodes and edges

The multi-target graph injection attack against a GNN-based fraud detector

- Target set $\mathcal{T} \subset \mathcal{V}$ consisting of fraud nodes
- The objective function

• $\mathbf{s}'_{v} = f_{\theta^{*}}(G', v)$ where $\theta^{*} = \operatorname{argmin}_{\theta} \mathcal{L}_{\operatorname{train}}(f_{\theta}, G, \mathcal{D})$, $\mathcal{L}_{\operatorname{train}}$ is a training loss of $f_{\theta}(\cdot)$, and $\mathcal{D} \subset \mathcal{Y}$ is a training label set

03 MonTi: Multi-Target One-Time Graph Injection Attack Model

Overview of MonTi

Candidate Selection

Lab

03 Candidate Selection

Three types of contexts that affect multi-target graph injection attacks

- Target nodes $\mathcal{T} = \{t_1, \dots, t_m\}$, Candidate nodes $\mathcal{C} = \{c_1, \dots, c_\alpha\} \subset \mathcal{N}^{(K)}$, and Attack nodes $\mathcal{V}_{in} = \{u_1, \dots, u_\Delta\}$
 - $\mathcal{N}^{(K)}$ is a set of K-hop neighbors of the target nodes, excluding the target nodes themselves

A learnable candidate scoring function $\mathcal{J}(\cdot)$

- $|\mathcal{N}^{(K)}|$ can drastically increase depending on the target nodes
- If $|\mathcal{N}^{(K)}| > n_c$, MonTi selects top- n_c candidate nodes with $\mathcal{J}(\cdot)$
 - $\mathcal{J}(G, v) = MLP(\sigma([\mathbf{q}_v \parallel \mathbf{m}_v \parallel \mathbf{h}_v \parallel \mathbf{h}_T])) \in \mathbb{R}$
 - $\mathbf{q}_{v} = \mathrm{MLP}(\mathbf{x}_{v}) \in \mathbb{R}^{D_{H}} \text{ and } \mathbf{m}_{v} = \mathrm{MLP}([d_{v} \parallel \beta_{v}]) \in \mathbb{R}^{D_{H}}$
 - d_v is the degree of node v and β_v is the number of target nodes directly connected to node v
 - $\mathbf{h}_{v} \in \mathbb{R}^{D_{H}}$ is a representation of node v computed by a pretrained surrogate GNN and $\mathbf{h}_{\mathcal{T}} = \text{READOUT}(\mathbf{h}_{t} | t \in \mathcal{T}) \in \mathbb{R}^{D_{H}}$
- Otherwise, all nodes in $\mathcal{N}^{(K)}$ are considered as candidate nodes

Original Graph

Adversarial Structure Encoding

03 One-Time Graph Injection

03 Training of MonTi

Straight-through Gumbel-top-k

- To solve the optimization problems of discrete selection in MonTi, we adopt the Gumbel-Top-k technique coupled with the straight-through estimator
 - Candidate Selection, Adversarial Edge Generation, Adversarial Attribute Generation for discrete attributes

Loss function

• Following the previous works in graph injection attacks define the loss function based on C&W loss

$$\min_{G'} \mathcal{L}(f_{\theta^*}, G', \mathcal{T}) = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \max(s'_{t,1} - s'_{t,0}, 0) \text{ where } \mathbf{s}'_t = f_{\theta^*}(G', t) \in \mathbb{R}^2$$

- Focus on increasing normal scores and decreasing fraud scores of target nodes to align with our scenarios.
- The loss is calculated using a surrogate model (black-box attack)

04 Experiments

Datasets

- Create 3 real-world datasets for multi-target graph injection attacks
 - GossipCop-S, YelpChi, LifeIns
- Create the training, validation, and test target sets with fraud nodes belonging to each split
- Each target set represents a fraud gang organized based on metadata or relations in each dataset
 - GossipCop-S: Fake news articles tweeted by the same user
 - YelpChi: Fake reviews of the same user or the fake reviews for the same product within the same month
 - LifeIns: Fraudulent insurance claims grouped based on relationships predefined by domain experts

	V	#Frauds	#Target Sets	8	D	Feature Type
GossipCop-S	16,488	3,898	2,438	3,865,058	768	Continuous
YelpChi	45,900	6,656	1,435	3,846,910	32	Continuous
LifeIns	122,792	1,264	380	912,833	1,611	Discrete

04 Experiments

Surrogate and Victim Models

- Vanilla GNNs: GCN (ICLR 2017), GraphSAGE (NIPS 2017), GAT (ICLR 2018)
- GNN-based fraud detectors: CARE-GNN (CIKM 2020), PC-GNN (TheWebConf 2021), GAGA (TheWebConf 2023)
- Train all the methods with two different initialization seeds
 - The models initialized with the first seed serve as surrogate models and the others are employed as victim models

Attack Baselines

- Black-box graph injection evasion attack methods:
 - G-NIA (CIKM 2021), TDGIA (KDD 2021), Cluster Attack (IJCAI 2022), G²A2C (AAAI 2023)

Evaluation Metric

• Average misclassification rates (%) of all target sets weighted by their sizes

Budgets

- Due to the **diverse sizes and substructures of target sets**, node and edge budgets should be allocated according to the characteristics of each target set.
- Impose limits on the budgets since excessively large budgets can lead to highly noticeable and easy attacks
- Node budget: $\Delta = \max([\rho \cdot \min(B, \overline{B}) + 0.5], 1)$ where ρ is a parameter to control node budget
 - $B \coloneqq |\mathcal{N}^{(1)} \cup \mathcal{T}|$, \overline{B} is the average value of *B* across all target sets within the dataset
- Edge budget: $\eta = \Delta \cdot \max([\min(d_T, \xi \cdot \overline{d}) + 0.5], 1)$ where ξ is a parameter to control edge budget
 - d_T is the average node degree of the target set, \bar{d} is the average node degree of all nodes in the graph
- We set $\rho = 0.05$, $\xi = 0.1$ for GossipCop-S, $\rho = 0.05$, $\xi = 0.5$ for YelpChi, and $\rho = 0.2$, $\xi = 0.5$ for LifeIns

Misclassification rates (%) on GossipCop-S when the types of surrogate and victim models are the same

GraphSAGE

* OOM: Out of Memory Error

Cluster Attack

G²A2C

MonTi

OOM

55

65

75

85

95

TDGIA

G²A2C

MonTi

00M

58

56

Cluster Attack

Misclassification rates (%) on YelpChi when the types of surrogate and victim models are the same

GCN

CARE-GNN

Clean **G-NIA** TDGIA **Cluster Attack** G²A2C **00M** MonTi 25 35 45 55 65 75 85 95 GAGA

GraphSAGE

GAT

60

62

64 66

68

Misclassification rates (%) on LifeIns when the types of surrogate and victim models are the same

Clean G-NIA TDGIA Cluster Attack G²A2C MonTi 25 40 55 70 85 100

GCN

CARE-GNN

GAT Clean G-NIA TDGIA **Cluster Attack** N/A G²A2C MonTi 25 10 40 55 85 70 100 GAGA Clean **G-NIA** TDGIA **Cluster Attack** N/A G²A2C **00M**

27

* N/A: Not Completed in 5 days

24

MonTi

15

18

21

36

33

Misclassification rates (%) on GossipCop-S when GCN is the surrogate model

Misclassification rates (%) on YelpChi when GCN is the surrogate model

Misclassification rates (%) on LifeIns when GCN is the surrogate model

04 Case Study: Effects of the Size of Fraud Gangs

Categorize target sets into three groups based on $B \coloneqq |\mathcal{N}^{(1)} \cup \mathcal{T}|$

- On GossipCop-S using GCN as the surrogate model
- B reflects the size of the fraud gang

04 Case Study: Effects of the Size of Fraud Gangs

Visualize the latent representations of target nodes computed by GAGA before and after the attack

- On GossipCop-S using GCN as the surrogate model and focusing target sets with B > 1000
- MonTi significantly shifts the representations from the fraud to the benign area

Single-Target Attack Performance 04

On OGB-Prod and PubMed with GCN as the surrogate and victim models ($\Delta = 1, \eta = 1$)

Despite not being specifically designed for single-target attacks, MonTi outperforms all baselines ٠

PubMed

80

70

05 Conclusion

- Multi-target graph injection attacks against GNN-based fraud detectors with practical scenarios
 - First study to explore adversarial attacks against GNN-based fraud detectors and graph injection attacks for multiple target nodes formed by fraud gangs
- Proposed method MonTi achieves flexible and efficient attacks by adaptively allocating the degree budget for each attack node and injecting all attack nodes at once
- MonTi effectively captures interdependencies between node attributes and edges, as well as interactions within target nodes and among attack nodes
- MonTi significantly outperforms state-of-the-art graph injection attack methods

▲ GitHub

BDILab

Our datasets and codes are available at:

https://github.com/bdi-lab/MonTi

You can find us at: {cjh0507, heehyeon, jjwhang}@kaist.ac.kr https://bdi-lab.kaist.ac.kr

