Non-Exhaustive, Overlapping Clustering

J. J. Whang, Y. Hou, D. F. Gleich, and I. S. Dhillon IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) November 2019

Clustering

- Traditional disjoint, exhaustive clustering
 - Every single data point is assigned to exactly one cluster.
- Non-exhaustive, overlapping clustering
 - A data point is allowed to be outside of any cluster, and clusters can overlap.

K-Means Clustering

- K-Means seeks k clusters C_1, C_2, \dots, C_k in $X = \{x_1, x_2, \dots, x_n\}$
 - $C_i \cap C_j = \emptyset \ \forall i \neq j$ (disjoint) and $C_1 \cup C_2 \cup \cdots \cup C_k = X$ (exhaustive)
- K-Means objective function

$$\min_{\{\mathcal{C}_j\}_{j=1}^k} \sum_{j=1}^k \sum_{\mathbf{x}_i \in \mathcal{C}_j} \|\mathbf{x}_i - \mathbf{m}_j\|^2, \text{ where } \mathbf{m}_j = \frac{\sum_{\mathbf{x}_i \in \mathcal{C}_j} \mathbf{x}_i}{|\mathcal{C}_j|}$$

- K-Means algorithm
 - Repeatedly assigning data points to their closest clusters and recomputing centers.

NEO-K-Means Objective

- NEO-K-Means (Non-Exhaustive, Overlapping K-Means)
- Assignment matrix $U = [u_{ij}]_{n \times k}$
 - $u_{ij} = 1$ if x_i belongs to cluster j
 - $u_{ij} = 0$ if x_i does not belong to cluster j

$$U = \begin{bmatrix} c_1 & c_2 & c_3 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

NEO-K-Means Objective

$$\begin{split} \min_{U} \quad & \sum_{j=1}^{k} \sum_{i=1}^{n} u_{ij} \|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2}, \text{ where } \mathbf{m}_{j} = \frac{\sum_{i=1}^{n} u_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ij}} \\ \text{s.t.} \quad & trace(U^{T}U) = (1+\alpha)n, \ \sum_{i=1}^{n} \mathbb{I}\{(U\mathbf{1})_{i} = 0\} \leq \beta n. \end{split}$$

Minimize the distance between a data point and its cluster center. Add two constraints to control overlap and non-exhaustiveness.

- α : overlap, β : non-exhaustiveness
- $\alpha = 0, \beta = 0$: equivalent to the traditional K-Means objective

NEO-K-Means Objective

$$\begin{split} \min_{U} & \sum_{j=1}^{k} \sum_{i=1}^{n} u_{ij} \|\mathbf{x}_{i} - \mathbf{m}_{j}\|^{2}, \text{ where } \mathbf{m}_{j} = \frac{\sum_{i=1}^{n} u_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ij}} \\ \text{s.t.} & trace(U^{T}U) = (1 + \alpha)n, \ \sum_{i=1}^{n} \mathbb{I}\{(U\mathbf{1})_{i} = 0\} \leq \beta n. \\ (\mathbf{1} + \alpha)n \text{ assignments are made.} & \text{At most } \beta n \text{ data points can have no membership in any cluster.} \end{split}$$

- α : overlap, β : non-exhaustiveness
- $\alpha = 0, \beta = 0$: equivalent to the traditional K-Means objective

NEO-K-Means Algorithm

- A simple iterative algorithm that **monotonically decreases the NEO-K-Means objective**.
- Example ($n = 20, \alpha = 0.15, \beta = 0.05$)
 - Assign $n \beta n$ (= 19) data points to their closest clusters.
 - Make $\beta n + \alpha n \ (= 4)$ assignments by taking minimum distances.

NEO-K-Means via LRSDP

- The NEO-K-Means algorithm
 - Fast iterative algorithm, but susceptible to initialization
- LRSDP initialization
 - Make the NEO-K-Means get more accurate and reliable solutions

Semidefinite Programs (SDPs)

- Semidefinite Programming (SDP)
 - Convex problem → globally optimized via off-the-shelf SDP solvers
 - Problems with fewer than 100 data points
- Low-rank SDP
 - Non-convex → locally optimized via an augmented Lagrangian method
 - Problems with tens of thousands of data points

Canonical SDP maximize $\operatorname{trace}(\boldsymbol{C}\boldsymbol{X})$ subject to $\boldsymbol{X} \succeq 0, \boldsymbol{X} = \boldsymbol{X}^T,$ $\operatorname{trace}(\boldsymbol{A}_i\boldsymbol{X}) = b_i$ $i = 1, \dots, m$ Low-rank SDP maximize $\operatorname{trace}(\boldsymbol{C}\boldsymbol{Y}\boldsymbol{Y}^T)$ subject to $\boldsymbol{Y}: n \times k$ $\operatorname{trace}(\boldsymbol{A}_i\boldsymbol{Y}\boldsymbol{Y}^T) = b_i$ $i = 1, \dots, m$

NEO-K-Means as an SDP

SDP-like Formulation for NEO-K-Means

NEO-K-Means with a discrete assignment matrix (Non-convex, combinatorial problem)

$$\begin{array}{ll} \mbox{maximize}\\ \mathbf{z}, \mathbf{f}, \mathbf{g} \\ \mbox{subject to} \end{array} & \mbox{trace}(\mathbf{W}^{-1}\mathbf{Z}) = k, & (a) \\ Z_{ij} \geq 0, & (b) \\ \mathbf{Z} \succeq 0, \mathbf{Z} = \mathbf{Z}^T & (c) \\ \hline \mathbf{Z} \in = \mathbf{W} \mathbf{f}, & (d) \\ \mathbf{e}^T \mathbf{f} = (1 + \alpha)n, & (e) \\ \mathbf{e}^T \mathbf{g} \geq (1 - \beta)n, & (f) \\ \mathbf{f} \geq \mathbf{g}, & (g) \\ \hline \mathbf{rank}(\mathbf{Z}) = k, & (h) \\ \mathbf{f} \in \mathcal{Z}_{\geq 0}^n, \mathbf{g} \in \{0, 1\}^n. & (i) \\ \end{array} \begin{array}{l} \mathbf{Z} \mbox{multiple}(\mathbf{x}, \mathbf{z}) = \mathbf{z}^T \\ \mbox{multiple}(\mathbf{x}, \mathbf{z}) = \mathbf{z}^T \\ \mbox{multiple}(\mathbf{z}, \mathbf{z}) = \mathbf{z}^T \\ \mbox{mu$$

Convex relaxation of NEO-K-Means

$$\begin{array}{ll} \mbox{maximize} & \mbox{trace}(\mathsf{KZ}) - \mathbf{f}^T \mathbf{d} \\ \mbox{subject to} & \mbox{trace}(\mathbf{W}^{-1}\mathbf{Z}) = k, & (a) \\ Z_{ij} \geq 0, & (b) \\ \mathbf{Z} \succeq 0, \mathbf{Z} = \mathbf{Z}^T & (c) \\ \end{array} & \begin{array}{l} \mbox{Z must arise from} \\ \mbox{an assignment matrix} \\ \mbox{Z e = Wf}, & (d) \\ \mathbf{e}^T \mathbf{f} = (1 + \alpha)n, & (e) \\ \mathbf{e}^T \mathbf{g} \geq (1 - \beta)n, & (f) \\ \mathbf{f} \geq \mathbf{g}, & (g) \\ \end{array} & \begin{array}{l} \mbox{Overlap \&} \\ \mbox{non-exhaustiveness} \\ \mbox{constraints} \\ \mbox{Relaxation} \end{array}$$

Low-Rank SDP for NEO-K-Means

- Low-rank factorization of $Z = YY^T$ ($Y: n \times k$, non-negative)
 - Lose convexity but only requires linear memory

$$\begin{array}{ll} \underset{\mathbf{Y},\mathbf{f},\mathbf{g},\mathbf{s},r}{\text{minimize}} & \mathbf{f}^T \mathbf{d} - \operatorname{trace}(\mathbf{Y}^T \mathbf{K} \mathbf{Y}) \\ \text{subject to} & k = \operatorname{trace}(\mathbf{Y}^T \mathbf{W}^{-1} \mathbf{Y}) \\ & 0 = \mathbf{Y} \mathbf{Y}^T \mathbf{e} - \mathbf{W} \mathbf{f} & \mathbf{Z} \text{ is replaced by } \mathbf{Y} \mathbf{Y}^T \\ & 0 = \mathbf{e}^T \mathbf{f} - (1 + \alpha) n \\ & 0 = \mathbf{f} - \mathbf{g} - \mathbf{s} \\ & 0 = \mathbf{e}^T \mathbf{g} - (1 - \beta) n - r & \mathbf{s}, r : \text{slack variables} \\ & Y_{ij} \ge 0, \mathbf{s} \ge 0, r \ge 0 \\ & 0 \le \mathbf{f} \le k \mathbf{e}, 0 \le \mathbf{g} \le 1 \end{array}$$

Solving the NEO-K-Means Low-Rank SDP

- Augmented Lagrangian method to optimize the NEO-K-Means Low-Rank SDP
 - minimizing an augmented Lagrangian of the problem

 $\mathcal{L}_{\mathcal{A}}(Y, \mathbf{f}, \mathbf{g}, \mathbf{s}, r; \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\gamma}, \sigma) = \underbrace{\mathbf{f}^{T} \mathbf{d} - \mathsf{trace}(\mathbf{Y}^{T} \mathbf{K} \mathbf{Y})}_{\mathbf{f}}$ the objective $-\lambda_1(\operatorname{trace}(\mathbf{Y}^T\mathbf{W}^{-1}\mathbf{Y})-k)+\frac{\sigma}{2}(\operatorname{trace}(\mathbf{Y}^T\mathbf{W}^{-1}\mathbf{Y})-k)^2$ $-\boldsymbol{\mu}^{\mathsf{T}}(\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\mathbf{e} - \mathbf{W}\mathbf{f}) + \frac{\sigma}{2}(\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\mathbf{e} - \mathbf{W}\mathbf{f})^{\mathsf{T}}(\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\mathbf{e} - \mathbf{W}\mathbf{f})$ All the details of $-\lambda_2(\mathbf{e}^{\mathsf{T}}\mathbf{f}-(1+\alpha)n)+\frac{\sigma}{2}(\mathbf{e}^{\mathsf{T}}\mathbf{f}-(1+\alpha)n)^2$ the augmented Lagrangian $(\mathbf{f} - \mathbf{g} - \mathbf{s}) + rac{\sigma}{2} (\mathbf{f} - \mathbf{g} - \mathbf{s})^{\mathsf{T}} (\mathbf{f} - \mathbf{g} - \mathbf{s})$ method are in the paper. $-\lambda_3(\mathbf{e}^T\mathbf{g}-(1-\beta)n-r)+\frac{\sigma}{2}(\mathbf{e}^T\mathbf{g}-(1-\beta)n-r)^2$

Extending NEO-K-Means to Graph Clustering

- Graph Clustering
 - Find tightly connected groups
 - Traditional setting: assign a node to exactly one cluster.

- **NEO-K-Means** can be extended to graph clustering
 - **Overlapping community detection**
 - Weighted kernel NEO-K-Means objective is mathematically equivalent to an overlapping community detection objective.

Community Detection Using NEO-K-Means

- Normalized Cut: a traditional graph clustering objective
 - Assumes a disjoint, exhaustive clustering

$$\begin{split} \operatorname{ncut}(G) &= \min_{\mathcal{C}_1, \mathcal{C}_2, \cdots \mathcal{C}_k} \sum_{j=1}^k \frac{\operatorname{links}(\mathcal{C}_j, \mathcal{V} \backslash \mathcal{C}_j)}{\operatorname{links}(\mathcal{C}_j, \mathcal{V})} = \max_{\mathbf{y}_1, \mathbf{y}_2, \cdots \mathbf{y}_k} \sum_{j=1}^k \frac{\mathbf{y}_j^T A \mathbf{y}_j}{\mathbf{y}_j^T D \mathbf{y}_j} \\ & \overbrace{\mathbf{z}_1 \\ \mathbf{z}_2 \\ \mathbf{z}_3 \\ \mathbf{z}_4 \\ \mathbf{z}_5 \\ \mathbf{z}_5$$

Community Detection Using NEO-K-Means

Extending Normalized Cut to Non-exhaustive, Overlapping Clustering

Community Detection Using NEO-K-Means

- Weighted Kernel NEO-K-Means
 - Weight (W) : non-negative weight for each data point
 - Kernel (K) : inner products of two data points in a higher-dimensional space

$$\begin{split} \min_{U} \sum_{j=1}^{k} \sum_{i=1}^{n} u_{ij} w_{i} \| \phi(\mathbf{x}_{i}) - \mathbf{m}_{j} \|^{2} &= \min_{U} \sum_{j=1}^{k} \left(\sum_{i=1}^{n} u_{ij} w_{i} K_{ii} - \frac{\mathbf{u}_{j}^{T} W K W \mathbf{u}_{j}}{\mathbf{u}_{j}^{T} W \mathbf{u}_{j}} \right), \\ \text{where } \mathbf{m}_{j} &= \frac{\sum_{i=1}^{n} u_{ij} w_{i} \phi(\mathbf{x}_{i})}{\sum_{i=1}^{n} u_{ij} w_{i}}, \text{ s.t.} trace(U^{T} U) = (1 + \alpha)n, \ \sum_{i=1}^{n} \mathbb{I}\{(U\mathbf{1})_{i} = 0\} \leq \beta n. \end{split}$$

■ Weighted Kernel NEO-K-Means objective = the extended normalized cut objective

•
$$W \coloneqq D, K \coloneqq \sigma D^{-1} + D^{-1}AD^{-1}$$

	Data Clustering	Graph (Clustering
Traditional Idea	K-Means	Normalized Cut	
New Objectives	NEO-K-Means	Extended Normalized Cut	
	Weighted Kernel NEO-K-Means		
New Algorithms	Fast Iterative NEO-K-Means LRSDP NEO-K-Means		
		These two objectives are mathematically Equivalent.	

	Data Clustering	Graph Clustering	
Traditional Idea	K-Means	Normalized Cut	
New Objectives	NEO-K-Means Weighted Kernel NEO-K-Means	Extended Normalized Cut	
New Algorithms	Fast Iterative NEO-K-Means LRSDP NEO-K-Means	Weighted Kernel NEO-K-Means LRSDP WK-NEO-K-Means	

Since the objectives are equivalent, NEO-K-Means can be applied to overlapping community detection.

Output of NEO-K-Means on a synthetic dataset

Green data points: overlap → A natural overlapping clustering structure

Black data points: outliers → Perfectly finds the five outliers

- Applications in Computer Vision
 - An image is annotated by various attributes such as parts (e.g., "arm", "wing") and materials (e.g., "glass", "plastic"). Each attribute corresponds to a cluster.

(a) Wood & Glass

(b) Wood

(c) Glass

Applications in Computer Vision

The Average F1 Scores (%)

Applications in Computer Vision, Bioinformatics, and Music Classification

Output of NEO-K-Means on Karate Club Network

Real-world Graph Datasets

Category	Graph	No. of Nodes	No. of Edges
Social Network	Facebook	348	2,866
	Orkut	731,332	21,992,171
	HepPh	11,204	117,619
Collaboration Network	AstroPh	17,903	196,972
	CondMat	21,363	91,286
Product Network	Amazon	334,863	925,872

Summary

- NEO-K-Means
 - Overlap and non-exhaustiveness: handled in a unified framework
 - Simple and intuitive objective function
 - LRSDP boosts up the performance of the iterative NEO-K-Means
- Weighted Kernel NEO-K-Means
 - Overlapping Community Detection
- Effective in identifying the ground-truth clusters in both data clustering and overlapping community detection

More Information: <u>http://bigdata.cs.skku.edu/</u>