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ABSTRACT
Clustering is one of the most fundamental tasks in data min-
ing. To analyze complex real-world data emerging in many
data-centric applications, the problem of non-exhaustive,
overlapping clustering has been studied where the goal is
to find overlapping clusters and also detect outliers simul-
taneously. We propose a novel convex semidefinite program
(SDP) as a relaxation of the non-exhaustive, overlapping
clustering problem. Although the SDP formulation enjoys
attractive theoretical properties with respect to global op-
timization, it is computationally intractable for large prob-
lem sizes. As an alternative, we optimize a low-rank fac-
torization of the solution. The resulting problem is non-
convex, but has a smaller number of solution variables. We
construct an optimization solver using an augmented La-
grangian methodology that enables us to deal with prob-
lems with tens of thousands of data points. The new solver
provides more accurate and reliable answers than other ap-
proaches. By exploiting the connection between graph clus-
tering objective functions and a kernel k-means objective,
our new low-rank solver can also compute overlapping com-
munities of social networks with state-of-the-art accuracy.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms

General Terms
Algorithms, Experimentation

Keywords
Overlapping Clustering, Community Detection, Semidefi-
nite Programming

∗Authors in alphabetical order with equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08 ...$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783398.

1. INTRODUCTION
Clustering is one of the most widely used primitives in

data mining. The goal of clustering is to take a set of data
points and assign them to groups, called clusters, such that
similar data points are assigned to the same cluster. The
traditional clustering algorithms, e.g., k-means, assign each
data point to exactly one cluster. This assignment might be
appropriate when clear groups exist in the data. We con-
sider the clustering problem when the data points do not
have an obvious separation into a small number of groups
and may contain both outliers and large regions of over-
lap between groups. This setting is especially applicable to
emerging types of data such as social networks [8], where
clusters (or communities) overlap due to the multiple per-
sonas that individuals adopt. Another example is clustering
biological genes and functions, which overlap because genes
can serve multiple functions [32].

We recently proposed a new formulation of this prob-
lem [30] called non-exhaustive, overlapping k-means (abbre-
viated NEO-K-Means) that seamlessly generalizes the clas-
sic k-means clustering objective. A kernelized and weighted
version allows us to equate the NEO-K-Means problem to
the problem of minimizing the normalized cut of an overlap-
ping clustering of a graph. We also proposed a novel iterative
algorithm for the NEO-K-Means objective that monotoni-
cally decreases the clustering objective. It was based on a
generalization of the standard k-means iterative assignment
algorithm (also called Lloyd’s algorithm [23]). Using this
procedure, we were able to automatically cluster a variety of
datasets that contain overlapping clusters as well as outliers.
When we tested our algorithm for the task of matching with
the ground-truth clusters, we produced clusters that have
state-of-the-art performance. When we used our algorithm
for community detection problem, our algorithm returned
communities that have the lowest normalized cut scores of
any existing algorithms. That iterative procedure is fast, but
suffers from the classic problem that iterative algorithms for
k-means fall into local minimizers given poor initialization
of the clusters. This is frequently addressed by running the
algorithm multiple times with random initialization or using
distance based initialization strategies [3].

In this manuscript, we continue our study of the non-
exhaustive, overlapping cluster objective function by propos-
ing a convex relaxation (Section 3). This convex problem



can be globally optimized in time and memory that is poly-
nomial in the input size. The relaxed solution can then be
rounded to a discrete assignment solution. Our experimen-
tal results with this algorithm show that it results in better
objective function values than our previous iterative algo-
rithm [30], albeit at a substantial computational cost.

The convex formulation is not without problems. When
the NEO-K-Means problem is relaxed to a convex semi-
definite program (sdp), the number of variables is quadratic
in the number of data points. Off-the-shelf sdp solvers such
as cvx [15, 14] can then only solve problems with fewer than
100 data points (this is due to a variety of complexities that
arise when our sdp is converted into a standard form for ex-
isting convex solvers). Even small modern datasets have a
few thousand points, and they require a different approach.

Consequently, we propose optimizing a low-rank factor-
ization of the sdp solution matrix (Section 4). This is a
standard technique to tackle large-scale sdps [6]. The re-
sulting optimization problem is a quadratically constrained
problem with a quadratic objective that can no longer be
globally optimized. An augmented Lagrangian procedure,
for instance, will only converge to a local minimizer. Never-
theless, when this approach has been used in the past with
high-quality optimization methods, it frequently generates
solutions that are as good as the global optimal from convex
solvers [6], a fact which has some theoretical justification [7].
Furthermore, similar ideas yielded stability improvements to
convex relaxations of the classic k-means objective [18].

Our new LRSDP algorithm to optimize this non-linear
problem can handle problems with tens of thousands of data
points, providing an order of magnitude increase in scalabil-
ity over the convex solver. On the problems where we can
compare with the convex formulations, we achieve globally
optimal objective values. It also consistently outperforms
the iterative algorithm for NEO-K-Means [30] in terms of
objective function value.

Our goal with the new procedure is to produce more accu-
rate and reliable clusterings than the previous iterative al-
gorithm [30] in the regime of medium-scale problems. This
regime is ideal because the new method is more computa-
tionally expensive than the iterative algorithm, which was
an efficient procedure designed for problems with millions of
data points. To see the difference between these methods, we
study the behavior on a synthetic problem with community
detection on a cycle graph. The graph is a Watts-Strogatz
random graph where each node has edges to five neighbors
on each side of the cycle. We also add random edges based
on an Erdös-Rényi graph with expected degree d, which we
consider as noise edges. When the noise is low, cluster-
ings should respect the cycle structure and be continuous,
connected regions. Hence, we compute an error measure
for each cluster based on the number of points disconnected
from the largest connected component in the cycle; this mea-
sure is illustrated in Figure 1(a). We compare three meth-
ods: the straight-forward iterative NEO-K-Means method
with random initialization, a multilevel variation on that
method [30], and our LRSDP with random initialization.
We run 100 trials and plot the the median, 25th and 75th
percentiles of the normalized cut scores and the number of
disconnected nodes by varying the noise level. Figure 1(b) &
Figure 1(c) show the results. Our LRSDP method achieves
the best performance in terms of both the normalized cut
and the number of disconnected nodes. We observe that our

disconnected nodes

(a) The disconnected nodes error measure counts number
of nodes that are disconnected from the largest connected
component. These nodes are illustrated for the cluster in
red. (Green nodes are not in that cluster.)
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Figure 1: A synthetic study of overlapping com-
munity detection on a Watts-Strogatz cycle graph
where each point should be assigned to two clus-
ters: (a) an illustration of a portion of the cycle
with dashed ‘noise’ edges and showing the discon-
nected points measure (which is 3); (b) & (c) the
results of normalized cut and the number of discon-
nected points on graphs with 100 nodes returned by
our new LRSDP procedure compared with two vari-
ations of our previous “neo” iterative algorithms.

LRSDP method often produces 0 disconnected points even
as the noise increases whereas the faster iterative method
starts to introduce many disconnected points with only a
modest amount of error.

We now summarize the contributions of this paper:
• We propose NEO-SDP: a convex relaxation of a k-

means-like objective that handles non-exhaustive, over-
lapping clustering problems (Section 3).
• We formulate the scalable NEO-LR objective and an

LRSDP algorithm to optimize a low-rank factorization
of the NEO-SDP solution (Section 4).
• We also propose a series of initialization and round-

ing strategies that accelerate the convergence of our
optimization procedures (Section 4.3).
• We evaluate LRSDP on real-world data clustering prob-

lems and find it achieves the best F1 performance with
respect to ground-truth clusters (Section 6.3).
• For graph clustering problems, LRSDP produces the

best quality communities among all clustering algo-
rithms on real-world networks (Section 6.4).

2. PRELIMINARIES
We begin our technical exposition by reviewing the NEO-

K-Means objective and the iterative algorithm that we pre-
viously proposed [30], then we briefly review related work
on semidefinite programs (sdps) and low-rank sdps.

2.1 The NEO-K-Means objective
Given a set of data points X = {x1,x2, ...,xn}, the goal

of non-exhaustive, overlapping clustering is to compute a set
of clusters C1, C2, ..., Ck such that C1 ∪ C2 ∪ ... ∪ Ck ⊆ X and



the clusters need not be disjoint. Furthermore, we wish for
the clusters to respect the natural groups of the data.

The NEO-K-Means objective [30] is a way of encoding this
problem. It depends on a set of data points X , a parameter
k for the number of clusters, two parameters α and β that
determine the amount of overlap and non-exhaustiveness,
respectively. The weighted and kernelized version also de-
pends on a positive weight for each data point, wi > 0 and
a feature map φ(x). Let U = [uij ]n×k be an assignment
matrix such that uij = 1 if a data point xi belongs to Cj ;
and uij = 0 otherwise. The weighted kernel NEO-K-Means
objective function is defined as follows:

minimize
∑k
c=1

∑n
i=1 uicwi‖φ(xi)−mc‖2

where mc =
∑n

i=1 uicwiφ(xi)∑n
i=1 uicwi

subject to trace(UTU) = (1 + α)n,∑n
i=1 I{(U1)i = 0} ≤ βn.

(1)

The two constraints imply that we make exactly (1 + α)n
assignments and allow at most βn data points to have no
membership in any cluster. If α = 0 and β = 0, then this
objective reduces to the classic weighted kernel k-means ob-
jective. In [30], we propose a strategy to automatically select
α and β given a dataset; see that manuscript for the details.
Selecting k and picking a feature map must be carefully con-
sidered based on the data and application.

The NEO-K-Means iterative algorithm. The NEO-
K-Means algorithm is a generalization of the k-means it-
erative assignment procedure that first makes (1 − β)n as-
signments from data points to the nearest cluster centroids
to satisfy the non-exhaustiveness condition. Then it makes
(1 +α)n− (1−β)n additional assignments that can overlap
based on the smallest distances between data points and cen-
troids. This procedure produces a non-increasing sequence
of objective function values.

Graph clustering. In another line of prior work, [12]
showed that optimizing the normalized cut objective is equiv-
alent to a particular weighted, kernel k-means objective.
Given a clustering of a graph, the normalized cut of a clus-
tering is the sum of normalized cut scores of each cluster:

ncut(C) =

k∑
j=1

ncut(Cj) =

k∑
j=1

cut(Cj)
links(Cj ,V)

,

where cut(Cj) is the number of edges leaving the cluster,
and links(Cj ,V) is the sum of degrees for all vertices in Cj ;
see [12] for more on this objective in the context of k-means.
An extended version of this idea holds for the NEO-K-Means
problem for normalized cut-based overlapping graph cluster-
ing [30]. Thus, it is possible to use the NEO-K-Means for-
mulation to produce a set of overlapping clusters on a graph
to minimize the sum of normalized cuts. The overlapping
graph clustering problem is closely related to community de-
tection, and the iterative NEO-K-Means algorithm achieves
state-of-the-art performance at finding ground-truth com-
munities in large networks.

2.2 Low-rank factorizations of SDPs
Semidefinite programs (sdps) are one of the most gen-

eral classes of tractable convex optimization problems. The
canonical form and low-rank variation are:

xi the data points for k-means §2
k the number of clusters
α the overlap parameter (0 means no overlap)

β the outlier parameter (0 means no outliers)

U the assignment matrix for a solution §2

Z the co-occurence matrix for the SDP relaxation

K the kernel matrix for NEO-K-Means §3
W a diagonal weight matrix for weighted problems
d a specialized weight vector for the SDP relaxation

f the cluster count variable for the SDP relaxation

g the outlier indicator for the SDP relaxation

Y the low-rank approximation of Z in NEO-LR §4

Table 1: A summary of the notation used in the
NEO-K-Means problem, the final assignment, and
the SDP and low-rank approximations.

Canonical SDP

maximize trace(CX)

subject to X � 0,X = XT ,

trace(AiX) = bi
i = 1, . . . ,m

Low-rank SDP

maximize trace(CY Y T )

subject to Y : n× k
trace(AiY Y T ) = bi

i = 1, . . . ,m

Notice the low-rank form drops the positive semidefinite
(X � 0) and symmetry constraints (X = XT ) but re-
places X = Y Y T , which automatically satisfies these con-
straints. Canonical sdps can be optimized by a variety of
solvers such as cvx [15, 14]. Low-rank SDP factorizations
are non-convex and are locally optimized via an augmented
Lagrangian method [6]; see the Appendix for a review of the
augmented Lagrangian idea.

3. AN SDP FOR NEO-K-MEANS
We begin by stating an exact sdp-like program for the

weighted kernel NEO-K-Means objective and then describe
how to relax it to an sdp. We use the same notation as
the previous section and summarize our common notation
in Table 1. The essential idea with the sdp-like version is
that we replace the assignment matrix U with a normalized
cluster co-occurrence matrix Z:

Z =

k∑
c=1

Wuc(Wuc)
T

sc

whereW is a diagonal matrix with the data point weights wi
on the diagonal, uc is the c-th column of matrix U and sc =
uTcWuc. When Z is defined from an assignment matrix U ,
then values of Zij are non-zero when items co-occur in a
cluster. With appropriate constraints on the matrix Z, it
serves as a direct replacement for the assignment matrix U .

To state the problem, let K denote the kernel matrix of
the data points, e.g., if X is the data matrix whose rows
correspond to data vectors, then K = XXT is just the
simple linear kernel matrix. Let d be a vector where di =
wiKii, i.e., a weighted diagonal from K. We need two new
types of variables as well:
• Let f denote a vector of length n such that the i-th

entry indicates the number of clusters that data point
i belongs to.
• Similarly, let g denote a vector of length n such that

the i-th entry is one if that data point i belongs to any
clusters, and zero if the data point does not belong to
any cluster.



Finally, we denote by e the vector of all 1s.
The following program is equivalent to the NEO-K-Means

objective with a discrete assignment matrix:

maximize
Z,f ,g

trace(KZ)− fTd

subject to trace(W−1Z) = k, (a)
Zij ≥ 0, (b)
Z � 0,Z = ZT (c)
Ze = W f , (d)
eT f = (1 + α)n, (e)
eTg ≥ (1− β)n, (f)
f ≥ g, (g)
rank(Z) = k, (h)
f ∈ Zn≥0,g ∈ {0, 1}n. (i)

(2)

We omit the verification that this is actually equivalent to
the NEO-K-Means objective (1) as it is not informative for
our discussion. Constraints (a), (b), (c), and (h) encode the
fact that Z must arise from an assignment matrix. Con-
straints (d), (e), (f), (g), and (i) are new to our NEO-K-
Means formulation that express the amount of overlap and
nonexhaustiveness in the solution. This is a mixed-integer,
rank constrained sdp. As such, it is combinatorially hard to
optimize just like the original NEO-K-Means objective.

The constraints that make this a combinatorial problem
are (h) and (i). If we relax these constraints:

maximize
Z,f ,g

trace(KZ)− fTd

subject to (a), (b), (c), (d), (e), (f), (g)
0 ≤ g ≤ 1

(3)

then we arrive at a convex problem. Thus, any local optimal
solution of (3) must be a global solution.

Solving (3) requires a black-box sdp solver such as cvx.
As it converts this problem into a standard form for such
problems, the number of variables becomes O(n2) and the
resulting complexity is worse than O(n3) in most cases, and
can be as bad as O(n6). These solvers are further limited by
the delicate numerical precision issues that arise as they ap-
proach a solution. The combination of these features means
that off-the-shelf procedures struggle to solve problems with
more than 100 data points. We now describe a means to
enable us to solve larger problems.

4. A LOW-RANK SDP FOR NEO-K-MEANS
In the sdp formulation of the NEO-K-Means objective (3),

the matrix Z should only be rank k. By applying the low-
rank factorization idea, Z becomes Y Y T where Y is n× k
and non-negative. Thus, the following optimization program
is a low-rank sdp for (3) (we have chosen to write it in
the standard form of a minimization problem with explicit
slack variables s, r to convert the inequality constraints into
equality and bound constraints).

minimize
Y ,f ,g,s,r

fTd− trace(Y TKY )

subject to k = trace(Y TW−1Y ) (s)
0 = Y Y T e−W f (t)
0 = eT f − (1 + α)n (u)
0 = f − g − s (v)
0 = eTg − (1− β)n− r (w)
Yij ≥ 0, s ≥ 0, r ≥ 0
0 ≤ f ≤ ke, 0 ≤ g ≤ 1

(4)

Here we also replaced the constraint Y Y T ≥ 0 with the
stronger constraint Y ≥ 0. This problem is a quadratic
programming problem with quadratic constraints, and we
will discuss how to solve it in the next subsection. We call
the problem NEO-LR and the solution procedure LRSDP.
Even though now we lose convexity by formulating the low
rank sdp, this nonlinear programming problem only requires
O(nk) memory and existing nonlinear programming tech-
niques allow us to scale to large problems.

After we get a solution, the solution Y can be regarded
as the normalized assignment matrix

Y = WÛ

where Û = [û1, û2, . . . , ûk], and ûc = uc/
√
sc for any c =

1, . . . , k.

4.1 Solving the NEO-K-Means low-rank SDP
To solve the NEO-LR problem (4), we use an augmented

Lagrangian framework. This is an iterative strategy where
each step consists of minimizing an augmented Lagrangian
of the problem that includes a current estimate of the La-
grange multipliers for the constraints as well as a penalty
term that drives the solution towards the feasible set. Aug-
mented Lagrangian techniques have been successful in pre-
vious studies of low-rank sdp approximations [6].

Let λ = [λ1;λ2;λ3] be the Lagrange multipliers associated
with the three scalar constraints (s), (u), (w), and µ and
γ be the Lagrange multipliers associated with the vector
constraints (t) and (v), respectively. Let σ ≥ 0 be a penalty
parameter. The augmented Lagrangian for (4) is:

LA(Y, f ,g, s, r;λ,µ,γ, σ) =

fTd− trace(Y TKY )︸ ︷︷ ︸
the objective

− λ1(trace(Y TW−1Y )− k)

+
σ

2
(trace(Y TW−1Y )− k)2

− µT (Y Y T e−W f)

+
σ

2
(Y Y T e−W f)T (Y Y T e−W f)

− λ2(eT f − (1 + α)n) +
σ

2
(eT f − (1 + α)n)2

− γT (f − g − s) +
σ

2
(f − g − s)T (f − g − s)

− λ3(eTg − (1− β)n− r)

+
σ

2
(eTg − (1− β)n− r)2

(5)

At each step in the augmented Lagrangian solution frame-
work, we solve the following subproblem:

minimize LA(Y , f ,g, s, r;λ,µ,γ, σ)

subject to Yij ≥ 0, s ≥ 0, r ≥ 0,

0 ≤ f ≤ ke, 0 ≤ g ≤ 1.

(6)

We use a limited-memory BFGS with bound constraints al-
gorithm [9] to minimize the subproblem with respect to the
variables Y , f , g, s and r. This requires computation of
the gradient of LA with respect to the variables. We de-
termine and validate an analytic form for the gradient in
Appendix B. In Section 6.1, we provide evidence that our
optimization procedure is correctly implemented. Those ex-
periments also show that we achieve the same objective func-



Table 2: Comparison of SDP and LRSDP (objective value and run time). The small differences between the
objective values are the result of differences in solution tolerances and precision in the sub-problems.

Objective value Run time
SDP LRSDP SDP LRSDP

dolphins

k=2, α=0.2, β=0 -1.968893 -1.968329 107.03 seconds 2.55 seconds
k=2, α=0.2, β=0.05 -1.969080 -1.968128 56.99 seconds 2.96 seconds
k=3, α=0.3, β=0 -2.913601 -2.915384 160.57 seconds 5.39 seconds
k=3, α=0.3, β=0.05 -2.921634 -2.922252 71.83 seconds 8.39 seconds

les miserables

k=2, α=0.2, β=0 -1.937268 -1.935365 453.96 seconds 7.10 seconds
k=2, α=0.3, β=0 -1.949212 -1.945632 447.20 seconds 10.24 seconds
k=3, α=0.2, β=0.05 -2.845720 -2.845070 261.64 seconds 13.53 seconds
k=3, α=0.3, β=0.05 -2.859959 -2.859565 267.07 seconds 19.31 seconds

Algorithm 1 Rounding Y to a binary matrix U

Input: Y , W , f , g, α, β
Output: U
1: Update Y = W−1Y
2: Set D to be the largest (n− βn) coordinates of g
3: for each entry i in D do
4: Set S to be the top bfic entries in Y (i, :)
5: Set U(i,S) = 1 /* Assign i to S */
6: end for
7: Set f̄ = f − bfc
8: Set R to be the largest entries in f̄
9: for each entry i in R do

10: Pick a cluster ` where Y (i, `) is the maximun over all clus-
ters where i is not currently assigned

11: Set U(i, `) = 1

12: end for

tion values as the convex formulation (3) in a small fraction
of the time.

4.2 Rounding procedure
Solutions from the the LRSDP method are real-valued.

We need to convert Y into a binary assignment matrix U
through a rounding procedure. Both the vectors f and g
provide important information about the solution. Namely,
f gives us a good approximation to the number of clusters
each data point is assigned to, and g indicates which data
points are not assigned to any cluster.

The procedure we use for rounding solutions Y that arise
when we run LRSDP on a unweighted kernel matrix K is
given by Algorithm 1. It uses the largest n − βn entries of
the vector g to determine the set of nodes to assign first.
Each data point i is assigned to bfic clusters based on the
values in the ith row of Y . The remaining assignments are
all based on the largest residual elements in f − bfc.

For our experiments with overlapping community detec-
tion, we found the following simple alternative rounding
strategy more successful. Select the top (1 + α)n entries
in W−1Y as the clustering assignment.

4.3 Practical improvements
Finally, we describe a set of practical improvements for our

method. These are designed to accelerate the convergence of
the augmented Lagrangian framework by moving it closer to
a point that satisfies the constraints and is nearly optimal.
They are designed based on commonly used strategies in the
relax and round approach to discrete optimization problems.

Final rounding. At the conclusion of our rounding pro-
cedure, we have an assignment of points to clusters. We then

use that as the initial cluster assignments for the iterative
NEO-K-Means procedure from [30]. Since that procedure
has monotone convergence behavior, this can only improve
the solution.

Initialization. We run the iterative NEO-K-Means al-
gorithm multiple times and use the result with the best ob-
jective function value as the initialization to LRSDP. For
problems over a few hundred data points, this procedure
results in faster convergence and better final solutions.

Sampling. For vector datasets without feature maps, we
found that first using LRSDP on sampling 10% of the data
points, then using this LRSDP solution as an initialization of
the iterative algorithm produces similarly good results as us-
ing LRSDP on all the data points while taking significantly
less time.

Hierarchical results. For overlapping community de-
tection on large graph data (e.g., the HepPh and AstroPh
datasets we show later), we apply a two-level hierarchical

clustering. In the first level, we use LRSDP with k′ =
√
k,

α′ =
√

1 + α− 1 and unchanged β, then in the second level,
we run LRSDP with k′, α′ and β′ = 0 for each cluster at
level 1. These parameter settings produce a final assignment
result with a total of (1 + α)n assignments in k clusters.

5. RELATED WORK
This manuscript is most strongly related to convex re-

laxations of the k-means objective [18] and related sdp for-
mulations of k-means [27, 28]. For instance, [18] employs
the same general strategy of using a low-rank factoriza-
tion of the SDP for k-means in concert with an augmented
Lagrangian solver for the resulting nonlinear optimization
problem. Even more generally, our work fits into the broad
setting of convex relaxations of clustering problems includ-
ing normalized cut objectives [33].

Recently, there was a proposal for a different type of con-
vex clustering method [22, 16] which is also based on k-
means. The key difference is that these relaxations model
a centroid point for each data point and then attempt to
penalize differences among the centroids. It is related to
the lasso and the fused lasso procedures. As a convex opti-
mization problem, it suffers the same issues as the existing
sdp relaxations of k-means, namely, a quadratic number of
variables to optimize.

Using augmented Lagrangian methods to solve low-rank
factorizations of sdp solutions has a long history of deliver-
ing successful performance when the data arise from graphs.
For instance, [6] originally proposed this idea for the max-
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(f) Failure of k-means initialization

Figure 2: The output of NEO-K-Means algorithm with two different initialization methods on two synthetic
datasets. (a) & (b) On a simple dataset, NEO-K-Means can easily recover the ground-truth clusters with
k-means or LRSDP initialization. (c)–(f) LRSDP initialization allows the NEO-K-Means algorithm to con-
sistently produce a reasonable clustering structure whereas k-means initialization sometimes (4 times out of
10 trials) leads to a failure in recovering the underlying clustering structure.

cut and minimum bisection sdps. Later, similar ideas were
used to address key weaknesses in spectral clustering [20] on
power-law graphs.

6. EXPERIMENTS
We begin by validating our implementation and compar-

ing our solutions against the global optima from the cvx
program. We then show the effectiveness of LRSDP as an
initialization method of the iterative NEO-K-Means algo-
rithm [30] which is a simple greedy algorithm designed for
optimizing the NEO-K-Means objective function. Finally,
we show experimental results on vector and graph cluster-
ing problems by comparison with state-of-the-art clustering
and community detection methods.

6.1 Algorithmic validation
We measure the objective function values produced by

LRSDP compared with the convex formulation of the prob-
lem and solved by cvx. We consider two graph cluster-
ing problems using ‘dolphins’ [25] and ‘les miserables’ [17]
datasets. The ‘dolphins’ network represents frequent as-
sociations between 62 dolphins (there are 159 undirected
edges in the network), and ‘les miserables’ network repre-
sents the co-appearance of characters in the novel Les Mis-
erables (there are 77 nodes and 254 edges). Table 2 shows
the results. We try a set of different configurations with
k, α, and β. We compare the run time of cvx solver and
LRSDP and find that LRSDP is roughly an order of mag-
nitude faster than cvx. In Table 2, we report the objective
values before the relaxed solution is rounded to a discrete
assignment solution to precisely measure how much our so-

lution is different from the solution returned by cvx. We
can see that the objective values returned from cvx and
returned from our LRSDP solver are essentially identical—
they are different in light of the solution tolerances given
by the methods. In these cases, then, we are successful in
finding a globally optimal solution.

6.2 Motivating example
Now, we show how we can exploit the benefit of LRSDP by

using it as an initialization of the simple iterative NEO-K-
Means algorithm. We consider two synthetic datasets shown
in Figure 2(a) & Figure 2(c). In these datasets, green data
points indicate the overlapped region between clusters, and
black data points indicate outliers which are not supposed
to belong to any cluster. The first dataset was considered in
[30]. We run the iterative NEO-K-Means algorithm on these
datasets with two different initialization methods: k-means
and LRSDP. On a simpler dataset, Figure 2(a), we observe
that the NEO-K-Means can always recover the underlying
clustering structure regardless of the initialization meth-
ods. However, on Figure 2(c), we observe the advantages
of LRSDP over the k-means initialization. When we use
the LRSDP initialization, the NEO-K-Means always yields
a similar clustering structure as the ground-truth clusters as
shown in Figure 2(d). On the other hand, when the k-means
initialization is used, the NEO-K-Means fails to recover the
underlying clustering structure 4 times out of 10 trials as
shown in Figure 2(f). Thus, we see that on more compli-
cated datasets, the dangers of bad initialization and being
stuck in local minima become clearer, and LRSDP provides a



Table 3: Comparison of NEO-K-Means objective function values.

yeast music scene
worst best avg.±std. worst best avg.±std. worst best avg.±std.

kmeans+neo 9611 9495 9549± 51 87779 70158 77015± 7658 18905 18745 18806± 66
lrsdp+neo 9440 9280 9364± 60 82323 70157 75923± 5936 18904 18759 18811± 58
slrsdp+neo 9471 9231 9367± 90 82336 70159 75926± 5940 18895 18760 18810± 55

Table 4: F1 scores on real-world vector datasets.

moc esp isp okm kmeans+neo lrsdp+neo slrsdp+neo

yeast
worst - 0.274 0.232 0.311 0.356 0.390 0.369
best - 0.289 0.256 0.323 0.366 0.391 0.391
avg.±std. - 0.284±0.006 0.248±0.010 0.317±0.004 0.360±0.004 0.391±0.001 0.382±0.011

music
worst 0.530 0.514 0.506 0.524 0.526 0.537 0.541
best 0.544 0.539 0.539 0.531 0.551 0.552 0.552
avg.±std. 0.538±0.006 0.526±0.011 0.517±0.013 0.527±0.003 0.543±0.011 0.545±0.008 0.547±0.005

scene
worst 0.466 0.569 0.586 0.571 0.597 0.610 0.605
best 0.470 0.582 0.609 0.576 0.627 0.614 0.625
avg.±std. 0.467±0.002 0.575±0.005 0.598±0.010 0.573±0.002 0.610±0.015 0.613±0.002 0.613±0.008

Table 5: Real-world vector datasets.

n dim. ¯|C| k

yeast 2,417 103 731.5 14
music 593 72 184.7 6
scene 2,407 294 430.8 6

more stable initialization, which enables the NEO-K-Means
algorithm to consistently produce a reasonable clustering.

6.3 Data clustering
We show some experimental results on real-world vector

datasets. We use three multi-label datasets which we get
from [1]. Table 5 presents some basic statistics of these
datasets (‘dim.’ denotes the dimensionality of the vectors
and ¯|C| denotes the average size of the ground-truth clus-
ters). The ‘music’ dataset [29] consists of a set of feature
vectors extracted from 593 different music songs. In this
dataset, each song is labelled by emotions presented in the
song, e.g., happy, surprised, relaxing, etc. Since several dif-
ferent emotions can be expressed in a song, a song can have
more than one label. The ‘scene’ dataset [5] is a set of scene
image feature vectors. Each image can be labelled by their
scenes, e.g., beach, sunset, mountain, and an image can con-
tain more than one scene. The ‘yeast’ dataset [13] is from
a biology domain. This dataset is a set of feature vectors
constructed based on micro-array expression data and phy-
logenetic profiles of genes. Each gene belongs to multiple
functional classes, so each gene can have multiple labels.
On these datasets, we treat each label as a ground-truth
cluster.

To see the effectiveness of our LRSDP method, we com-
pare LRSDP using a final iterative NEO-K-Means improve-
ment step. This method is denoted by ‘lrsdp+neo’. Also,
we used the sampling method with 10% of the data points.
This method is denoted by ‘slrsdp+neo’. We compare these
LRSDP approaches with the iterative NEO-K-Means initial-
ized by the traditional k-means (denoted by ‘kmeans+neo’).

We run each method five times, and Table 3 shows the best,
worst, average, and the standard deviation of the NEO-K-
Means objective function values. Within all these methods,
α and β values are automatically detected (see [30] for de-
tails). A lower objective value indicates a better cluster-
ing. We can see that there is a significant difference in the
objective value between ‘kmeans+neo’ and LRSDP meth-
ods (‘lrsdp+neo’ and ‘slrsdp+neo’) on ‘yeast’ and ‘music’
datasets. By using the LRSDP solution as the initialization
of the iterative algorithm, we can achieve a better objec-
tive function value for two of the datasets. This implies
that LRSDP is effective in optimizing the NEO-K-Means
objective, and thus provides a good initialization of the it-
erative algorithm. We note that the benefit of LRSDP on
‘scene’ dataset is not significant, but we also note that on
this dataset, the average behavior of all methods is roughly
the same. In this case, the overlaps among the ground-truth
clusters are very small (the ground-truth α is 0.074) which
implies that the traditional k-means should be a highly ac-
curate initialization.

We also compare the clustering performance with other
state-of-the-art clustering methods including model-based
overlapping clustering [4], denoted by moc, explicit/implicit
sparsity constrained clustering [24], denoted by esp, and isp,
respectively, and overlapping k-means [10], denoted by okm.
All these clustering methods are initialized by k-means, and
executed five times. To see the clustering performance, we
compute the F1 score which measures the matching be-
tween algorithmic solutions and the ground-truth clusters
(see [30] or [31] for details about how we compute the F1

score). Higher F1 scores indicate improved matches with
the ground-truth clusters. Table 4 shows F1 scores of each
algorithm on the real-world datasets. On the ‘yeast’ dataset,
moc produces 13 empty clusters and one cluster which con-
tains all the data points, so we cannot report F1 score of moc
on this dataset. We first note that the NEO-K-Means-based
methods (‘kmeans+neo’, ‘lrsdp+neo’, and ‘slrsdp+neo’) are
consistently better than the other clustering methods; and,
the LRSDP methods are able to achieve better F1 scores than
the other methods.



Figure 3: Visualization of the clustering result of
LRSDP on ‘dolphins’ network. Blue nodes only be-
long to cluster 1, red nodes only belong to cluster 2,
and green nodes belong to both of the clusters.

Table 6: Real-world network datasets.

No. of vertices No. of edges

Facebook1 348 2,866
Facebook2 756 30,780
HepPh 11,204 117,619
AstroPh 17,903 196,972

6.4 Overlapping community detection
The iterative NEO-K-Means method and our new LRSDP

method can both be used for overlapping community detec-
tion because optimizing the NEO-K-Means objective func-
tion corresponds to optimizing an extended version of nor-
malized cut [30]. To see whether LRSDP produces a reason-
able clustering structure on graphs, we visualize the cluster-
ing result of LRSDP (k=2, α=0.2, β=0) on the ‘dolphins’
network [25] in Figure 3. There are two clusters where green
nodes indicate the overlapped region (blue and green nodes
form one cluster, and red and green nodes form the other
cluster). Notice that the green nodes have many interac-
tions with both of the clusters, which shows that LRSDP
produces a plausible solution aligned with an intuitive clus-
tering structure.

Next, we consider real-world networks from [21]. We use
four different networks which are summarized in Table 6.
Facebook1 and Facebook2 are social networks, and HepPh
and AstroPh are collaboration networks. To run LRSDP on
the two large networks, HepPh and AstroPh, we use a hier-
archical clustering which we discussed in Section 4.3. Table 7
shows the comparison of the average normalized cut between
the multilevel NEO-K-Means algorithm [30] and LRSDP.
The multilevel NEO-K-Means (denoted by ‘multilevel neo’
or ‘m-neo’) is a variation of the iterative NEO-K-Means al-
gorithm where the graph clustering problem is solved at mul-
tiple scales. We also use the multilevel NEO-K-Means as the
final improvement step of LRSDP as we briefly discussed in
Section 4.3. We see that LRSDP achieves the lower nor-
malized cut than the multilevel NEO-K-Means, which indi-
cates that LRSDP is beneficial to optimizing the objective
function. Within these methods, we set k=32, α=3, β=0
on Facebook networks. On large networks, we determine α
and β values based on the statistics of the output of nise
method [31].

We also compare with other state-of-the-art overlapping
community detection methods including demon [11], bigclam

Table 7: Average normalized cut of the iterative
multilevel NEO-K-Means and LRSDP

multilevel neo LRSDP

Facebook1 0.371 0.279
Facebook2 0.331 0.223
HepPh 0.185 0.169
AstroPh 0.240 0.201

Table 8: AUC of conductance-vs-graph coverage

Facebook1 Facebook2 HepPh AstroPh

bigclam 0.830 0.640 0.625 0.645
demon 0.495 0.318 0.503 0.570
oslom 0.319 0.445 0.465 0.580
nise 0.297 0.293 0.102 0.153
m-neo 0.285 0.269 0.206 0.190
LRSDP 0.222 0.148 0.091 0.137

[34], oslom [19], and nise [31]. Let us first note that the
runtime of LRSDP is competitive with other state-of-the-
art approaches. For example, on the HepPh network with
k=100, LRSDP took 18 minutes whereas oslom method took
19 minutes and bigclam method took 11 minutes. On the
other hand, the multilevel NEO-K-Means algorithm com-
pleted in less than 10 seconds. Thus, our approaches and
algorithms would be more suitable for applications where
getting a high-quality clustering is more important than get-
ting faster results. This is the case, for instance, in modern
biology and neuroscience data. A recently collected network
of the rat brain required “more than 4,000 hours to com-
pile” [2]. On this time scale, the quality of the final results
is paramount.

We evaluate the quality of communities based on the con-
ductance score which is one of the most commonly used met-
rics to evaluate the cohesiveness of communities. In particu-
lar, we compute the area under the curve (AUC) in a plot of
conductance-vs-graph coverage. This metric was also stud-
ied in [31]. Given a community (set), the conductance of
the community is defined to be the cut of the set divided by
the least number of edges incident on either the set or its
complement. By definition, a conductance score is always
greater than or equal to the normalized cut. Given a set of
algorithmic communities, we first compute the conductance
score of each community, and then sort them in ascending
order. We greedily take communities until a certain percent-
age of the graph is covered. So, in a conductance-vs-graph
coverage plot, the x-axis is the graph coverage and y-axis
is the maximum conductance score among the communities
that we used to cover the corresponding portion of the graph.
Finally, we compute the AUC score of this plot. The AUC
score is normalized such that the maximum AUC is equal
to one. A lower AUC score indicates a better clustering.
Table 8 shows the results. We can see that LRSDP achieves
the lowest AUC score across all the datasets, which implies
that it produces the most coherent communities.

7. CONCLUSION
Our new convex and low-rank objective functions for non-

exhaustive, overlapping clustering provide a new, principled



framework to cluster vector and graph data. When our non-
convex low-rank method is optimized through an augmented
Lagrangian method, it produces state-of-the-art quality re-
sults for both vector datasets as well as for the overlapping
community detection problem on a graph.

We highlight a few directions for future work. First, our
current rounding procedure provides no guarantees on the
quality of the approximation. Weak guarantees on any round-
ing procedure would allow us to design approximation algo-
rithms based on the convex formulation of the objective. Ad-
ditionally, there are a variety of complex rounding schemes
used in spectral clustering, e.g. [35], that may further im-
prove our performance on more difficult problems. Second,
there is a renaissance in fast alternating methods and prox-
imal methods for convex and nearly convex objectives that
arise in machine learning. We also plan to study variations
on the low-rank approximation (4) that can utilize some of
these techniques for even more scalability.
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APPENDIX
A. AUGMENTED LAGRANGIANS

The augmented Lagrangian framework is a general strat-
egy to solve nonlinear optimization problems with equality
constraints. We briefly review a standard textbook deriva-
tion for completeness [26]. Consider a general problem:

minimize
x

f(x)

subject to ci(x) = 0, i = 1, . . . ,m

l ≤ x ≤ u.

(7)

The augmented Lagrangian for this problem involves a set
of Lagrange multipliers λi to estimate the influence of each
constraint on the objective as well as a quadratic penalty to
satisfy the nonlinear constraints. It is defined as

LA(x;λ, σ) = f(x)−
m∑
i=1

λici(x) +
σ

2

m∑
i=1

c2i (x).

An augmented Lagrangian algorithm iteratively proceeds
from an arbitrary starting point to a local solution of (7).
At each step, a bound-constrained solver minimizes LA over
x subject to l ≤ x ≤ u. Based on an approximate solu-
tion, it adjusts the Lagrange multipliers λ and may update
the penalty parameter σ. See Algorithm 17.4 in Nocedal and
Wright [26] for a standard strategy to adjust the multipliers,
penalty, and tolerances for each subproblem.

We use the L-BFGS-B procedure [9] to solve the subprob-
lem. This requires both a subroutine to evaluate the func-
tion and the gradient vector.

B. GRADIENTS FOR NEO-LR
We now describe the analytic form of the gradients for the

augmented Lagrangian of the NEO-LR objective and a brief
validation that these are correct. Consider the augmented
Lagrangian (5). The gradient has five components for the
five sets of variables: Y , f , g, s and r:

∇Y LA(Y , f ,g, s, r;λ, µ, γ, σ) =

− 2KY − eµTY − µeTY

− 2(λ1 − σ(tr(Y TW−1Y )− k))W−1Y

+ σ(Y Y T eeTY + eeTY Y TY )− σ(W feTY + efTWY )

∇fLA(Y , f ,g, s, r;λ, µ, γ, σ) =

d + Wµ− σ(WY Y T e−W 2f)− λ2e + σ(eT f − (1 + α)n)e

− γ + σ(f − g − s)

∇gLA(Y , f ,g, s, r;λ, µ, γ, σ) =

γ − σ(f − g − s)− λ3e + σ(eT g − (1− β)n− r)e

∇sLA(Y , f ,g, s, r;λ, µ, γ, σ) = γ − σ(f − g − s)

∇rLA(Y , f ,g, s, r;λ, µ, γ, σ) = λ3 − σ(eT g − (1− β)n− r)

Using analytic gradients in a black-box solver such as L-
BFGS-B is problematic if the gradients are even slightly in-
correctly computed. To guarantee the analytic gradients we
derive are correct, we use forward finite difference method
to get numerical approximation of the gradients based on
the objective function. We compare these with our analytic
gradient and expect to see small relative differences on the
order of 10−5 or 10−6. This is exactly what Figure 4 shows.
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Figure 4: Finite difference comparison of gradients
where ε = 10-6. This figure shows that the relative
difference between the analytical gradient and the
gradient computed via finite differences is small, in-
dicating the gradient is correctly computed.


