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ABSTRACT
In real-world social networks, communities tend to be overlapped

with each other because a vertex can belong to multiple commu-

nities. To identify these overlapping communities, a number of

overlapping community detection methods have been proposed

over the recent years. However, there have been very few stud-

ies on the characteristics and the implications of the community

overlap. In this paper, we investigate the properties of the nodes

and the edges placed within the overlapped regions between the

communities using the ground-truth communities as well as algo-

rithmic communities derived from the state-of-the-art overlapping

community detection methods. We �nd that the overlapped nodes

and the overlapped edges play di�erent roles from the ones that

are not in the overlapped regions. Using real-world data, we em-

pirically show that the highly overlapped nodes are involved in

structure holes of a network. Also, we show that the overlapped

nodes and edges play an important role in forming new links in

evolving networks and di�using information through a network.

KEYWORDS
community detection; overlap; social network analysis

1 INTRODUCTION
A social network can be represented as a graph where individuals

are denoted by a set of vertices and the social relationships between

the individuals are denoted by a set of edges of the graph. Com-

munity detection is one of the most important and fundamental

tasks in social network analysis where the goal is to identify a set of

cohesive nodes that are densely connected with each other. Since

an individual usually participates in more than one social circle,

the communities naturally overlap with each other.

Unlike the traditional graph clustering problem where a graph

is partitioned into disjoint clusters, there exist overlapped regions

between communities in the overlapping community detection

problem. Intuitively, we can expect that the nodes and the edges

placed within the overlapped regions may play di�erent roles from

the ones that are not in the overlapped regions.
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Table 1: Summary of real-world networks.

Graph No. of vertices No. of edges Ground-truth

DBLP 317,080 1,049,866 X
LiveJournal 1,143,395 16,880,773 X

Flickr-a 1,994,422 21,445,057 N/A

Myspace-a 2,086,141 45,459,079 N/A

LiveJournal-a 1,757,326 42,183,338 N/A

Table 2: Ground-truth Communities.

DBLP LiveJournal

No. of communities 13,477 662,859

No. of overlapped nodes (%) 110,806 (35%) 752,537 (65%)

No. of overlapped edges (%) 356,801 (34%) 4,724,058 (28%)

In this paper, we investigate the characteristics and the implica-

tions of the overlapped nodes and the overlapped edges based on

the ground-truth overlapping communities as well as algorithmic

overlapping communities. In particular, we �nd that the highly

overlapped nodes bridge di�erent communities and might comprise

a part of structural holes in a network. Also, we study the proper-

ties of a set of newly formed edges in evolving networks �nding

that the new links tend to be formed in the overlapped regions.

Finally, we implement a simple information di�usion model based a

networked coordination game, and show that the overlapped nodes

and the overlapped edges are crucial in information spreading.

2 DEFINITIONS
Given a graphG = (V, E)whereV indicates a set of vertices and E
indicates a set of edges, an overlapping community detection algo-

rithm �nds communities that are not necessarily pairwise disjoint.

�at is, a vertex is allowed to belong to multiple communities.

For each vertex vi ∈ V (i = 1, · · · ,n where n = |V|), let Si
denote a set of communities the vertex vi belongs to. We assume

that graphs are undirected. We de�ne the overlapped nodes and the

overlapped edges as follows.

Definition 1 (Overlapped nodes). We say that “a vertex vi is
placed in an overlapped region” or “a vertex vi is an overlapped node”
if the vertex belongs to more than one community, i.e., |Si | ≥ 2.

Definition 2 (Overlapped edges). We say that “an edge e =
{vi ,vj } is placed in an overlapped region” or “an edge e is an over-
lapped edge” if |Si ∩ Sj | ≥ 2.

LetVτ denote the set of overlapped nodes of a graphG = (V, E),
and Eτ denote the set of overlapped edges. �en, we de�ne the set

of non-overlapped nodes asV \Vτ . Similarly, we de�ne the set of

non-overlapped edges as E \ Eτ .
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Figure 1: �e average clustering coe�cients. Highly-overlapped nodes tend to have low clustering coe�cients.

3 EXPERIMENTAL SETUP
We use �ve real-world networks from [5], [8], [10]. Table 1 shows a

summary of the graphs. From [5], we get the ground-truth commu-

nities for the DBLP and LiveJournal datasets which are well-known

benchmarks for overlapping community detection (see Table 2 for

details). In particular, these datasets have been studied in the con-

text of the community-a�liation graph model [13] which shows

that the community overlap consists of densely connected nodes,

which might be also related to our investigation in Section 5.

Among a number of overlapping community detection algo-

rithms [12], a local expansion approach has been known to be one

of the most successful and scalable methods. For example, it has

been shown that the personalized PageRank-based local expan-

sion methods [1] can produce communities that are similar to the

ground-truth communities [4]. In particular, a recently proposed

method called NISE [11] can e�ciently identify high-quality over-

lapping communities using a PageRank-based local expansion from

a set of good seed nodes in a graph. Since we notice that the NISE

method achieves the best accuracy among the state-of-the-art over-

lapping community detection methods (see [11] for details), we

focus on the algorithmic solutions produced by the NISE method

in this paper. Within the NISE method, we try the di�erent seeding

and expansion methods, and select the one that shows the most

similar pa�erns to the ground-truth communities.

4 OVERLAPPED NODES AND STRUCTURAL
HOLES IN A NETWORK

Each node in a graph might have di�erent characteristics based

on its position in the graph. For example, some nodes might be

placed in a center of a tightly-knit community whereas some nodes

might be placed in the boundaries of a community. A subset of the

boundary nodes might comprise a structural hole in a network [2].

�e structural hole is de�ned to be an empty space of a network be-

tween two sets of nodes that do not closely interact with each other.

�is space is composed of a set of nodes that have multiple local
bridges (see [3] for more details). Note that if a node is adjacent to

many local bridges, then the node has a low clustering coe�cient
1
.

In Figure 1, we show an important characteristic of highly over-

lapped nodes in terms of their clustering coe�cients. Let us de�ne

the degree of overlap (or the overlap degree) of a node as the num-

ber of communities the node belongs to (i.e., |Si |). �en, we sort

1
�e clustering coe�cient of a vertex vi is de�ned to be the probability that two

randomly selected neighbors of vi are directly connected with each other.

Table 3: Networks with Timestamps.

Graph # of vertices # of new edges

Flickr-a→ Flickr-b 1,994,422 395,880

Myspace-a→Myspace-b 2,086,141 334,679

LiveJournal-a→ LiveJournal-b 1,757,326 649,909

the nodes according to their overlap degrees in descending order.

Let tp denote the overlap degree of the dpne-th node (0 ≤ p ≤ 1)

where n is the total number of nodes. We select the nodes whose

overlap degrees are greater than or equal to tp , and compute their

average clustering coe�cient. �e x-axis of the plots indicates

dpne as we increase p and the y-axis represents the average clus-
tering coe�cient. ‘Overlap-ground’ indicates that we compute the

overlap degree based on the ground-truth communities whereas

‘Overlap-algorithm’ is based on the algorithmic communities. For

comparison, we also select dpne nodes by selecting top dpne nodes
according to the degree centrality (i.e., the number of neighbors).

�is is denoted by ‘Degree’ in the plots. �e ‘Random’ line in-

dicates the case where we randomly select dpne nodes, and thus,

the line corresponds to the average clustering coe�cient of the

entire nodes. In Figure 1, we see that high-overlap nodes tend to

have low clustering coe�cients. As the overlap degree increases,

the average clustering coe�cient decreases (note that we interpret

the plots from right to le�; the threshold of the overlap degree

decreases from le� to right of the x-axis). It is interesting to see

that high-overlap nodes have even lower clustering coe�cients

than high-degree nodes. Since the denominator of the clustering

coe�cient of a vertexvi is de�ned to be di (di −1)/2 where di is the
degree of vi , it is likely that high-degree nodes have low clustering

coe�cients. Nonetheless, the ‘Overlap-*’ line is even lower than the

‘Degree’ line in Figure 1. Nodes with low clustering coe�cients in-

dicate that those nodes have diverse neighbors who are not directly

connected with each other (i.e., they might be adjacent to multiple

local bridges). �us, we can infer that the highly-overlapped nodes

might bridge di�erent communities, and play as structural holes in

a network. �is observation is also consistent with [7] even though

our empirical analysis provides di�erent viewpoints from [7].

5 NEW LINKS IN COMMUNITY OVERLAP
Social networks keep changing over time, e.g., new links are formed

over time. Link prediction is an important task in social network

analysis where the goal is to predict a set of new edges that are

likely to be formed in the near future. We investigate the pa�erns
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Table 4: Classi�cation of the edges according to the number of common communities of the endpoints of the edges.

Flickr-b LiveJournal-b Myspace-b

Ground (Q) Random (R) Ground (Q) Random (R) Ground (Q) Random (R)
|Si ∩ Sj | = 0 73,858 (18.66%) 223,995 (56.58%) 8,940 (1.38%) 402,832 (61.98%) 1,159 (0.35%) 62,047 (18.54%)

|Si ∩ Sj | = 1 64,112 (16.19%) 103,164 (26.06%) 6,290 (0.97%) 99,433 (15.30%) 2,219 (0.66%) 48,372 (14.45%)

|Si ∩ Sj | ≥ 2 257,910 (65.15%) 68,721 (17.36%) 634,679 (97.66%) 147,644 (22.72%) 331,301 (98.99%) 224,260 (67.01%)

mean(|Si ∩ Sj |) 4.77 0.68 20.00 1.23 26.15 5.03

median(|Si ∩ Sj |) 3 0 15 0 20 3

Table 5: �e overlap degrees of the endpoints of the links.

Flickr-b LiveJournal-b Myspace-b

Q R Q R Q R
mean 20.6 12.1 68.8 45.8 146.0 87.2

median 16 10 58 41 103 80

of the link formations in the overlapped regions of a network using

three real-world datasets summarized in Table 3. In these datasets,

we have the information about a set of new links formed during a

month for a �xed set of vertices. LetGa = (Va , Ea ) denote a graph
at time t and Gb = (Vb , Eb ) denote a graph at time t + 1 where

Va ≡ Vb and Ea ⊂ Eb . For example, Flickr-a corresponds to Ga
and Flickr-b corresponds to Gb for our datasets. �en, the set of

new links denoted by Q can be represented as Q = Eb \ Ea . Letm
denote the number of new links, i.e., |Q| =m.

It has been known that there exists an underlying mechanism

that drives to forming a new link between nodes [3]. To examine the

characteristics of the new links, we construct a baseline edge set R
by randomly selectingm edges such thatR∩Ea = ∅, i.e., R does not

contain an existing edge at time t . Table 5 shows the mean and the

median value of the overlap degrees of the endpoints of the edges

in Q and R. We see that the overlap degrees are greater in Q than

R. �is indicates that the new links are likely to be formed around

high-overlap nodes. Now, we classify them edges in Q according

to the community information of the endpoints of the edges. Given

an edge {vi ,vj }, let us de�ne X := {{vi ,vj } ∈ Q : Si ∩ Sj = ∅}.
Also, we de�ne Y := {{vi ,vj } ∈ Q : |Si ∩ Sj | = 1} and Z :=

{{vi ,vj } ∈ Q : |Si ∩ Sj | ≥ 2}. �en, Q = X ∪ Y ∪Z. Note that

X indicates a set of between-community edges, Y indicates a set

of non-overlapped within-community edges, andZ indicates the

overlapped edges. We similarly decompose R into the three sets,

and Table 4 shows the results. We see that most of the new links are

formed within communities by observing that |X| � |Y ∪Z| for
Q. �at is, a new link is likely to be formed between two nodes that

belong to the same community. More importantly, we notice that

Q contains a signi�cant number of overlapped edges compared to

R. �is indicates that the new links are formed in the overlapped

regions, i.e., the new links tend to be overlapped edges. Also, when

we compare the number of common communities of the endpoints

of the links in Q and R (the last two rows of Table 4), we see that

the new edges include highly overlapped edges.

6 INFORMATION DIFFUSION THROUGH
OVERLAPPED NODES AND EDGES

Information di�usion is another important task in social network

analysis where the goal is to model the way how information is

Algorithm 1 Information di�usion based on a coordination game

Input: graph G = (V, E), a set of initial nodes V0, a threshold q
Output: a set of infected nodes VI
1: VI = V0, VT = V0.

2: while VI , V and VT , ∅ do
3: for each vi ∈ VT do
4: VT = VT \ {vi }.
5: if at least q fraction of vi ’s neighbors are in VI then
6: VI = VI ∪ {vi }.
7: for each vj such that {vi , vj } ∈ E do
8: if vj < VI then
9: VT = VT ∪ {vj }.
10: end if
11: end for
12: end if
13: end for
14: end while

propagated throughout the network. It has been recognized that

a community structure a�ects the pa�erns of information spread-

ing [6], [9]. However, most of the information propagation models

assume disjoint communities rather than overlapping communities.

We explore the importance of overlapped nodes and overlapped

edges by considering a simple information di�usion model based

on a networked coordination game [3]. In this model, it is assumed

that each node has a choice between two possible behaviors A and

B, and decides to adopt one of the behaviors based on the choices

of its neighbors. If there exists an edge between vi and vj and the

nodes decide to choose the same behavior, there is an incentive for

them. �is can be represented as a coordination game as follows.

Let a > 0 denote the payo� if vi and vj both decide to adopt the

behavior A. Similarly, let b > 0 denote the payo� if they adopt the

behavior B. �ere is no payo� if vi and vj decide to adopt di�erent
behaviors. In this se�ing, each nodevi in the network choosesA or

B so that the node can maximize its payo�. Suppose that vi has di
neighbors and p fraction of its neighbors adopt A. �en, vi should
choose to adopt A if apdi ≥ b(1 − p)di . �us, we get p ≥ b/(a + b).
Let q = b/(a + b) denote the threshold. We see that vi chooses A
if q fraction of its neighbors choose A. Note that if the payo� a is

signi�cantly larger than b, then a node chooses to adopt A even

though only a small fraction of its neighbors chooses A. See [3] for
more details. We apply this simple information di�usion model to

our networks. We assume that there is a set of initial nodesV0 that

adopt A while the rest of the nodes in the network adopt B. �en,

each node plays the coordination game, and we see which nodes

end up deciding to adopt A. Algorithm 1 describes the procedure.

To investigate the roles of the overlapped nodes in this informa-

tion di�usion process, we choose the initial node setV0 in three
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Figure 2: Information di�usion with di�erent initial nodes. Overlapped nodes play a crucial role in information spreading.
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Figure 3: Information di�usion with di�erently removed
edges. Overlapped edges are important in di�usion.

di�erent ways: (i) random nodes, (ii) non-overlapped nodes, and (iii)

overlapped nodes. �en, we count the number of infected nodes in

the network, i.e., the number of nodes that decide to adopt A. �is

corresponds to the size of the outputVI of Algorithm 1. In Figure 2,

‘Random nodes’ indicates the case where we randomly choose k
nodes where k is the number of initial adopters (i.e., |V0 | = k).
‘Non-overlapped nodes’ indicates that we randomly select k initial

adopters among the non-overlapped nodes in the network whereas

‘Overlapped nodes’ indicates we randomly selectk nodes among the

overlapped nodes (we use the ground-truth communities). In Fig-

ure 2, we analyze the number of infected nodes for each of the three

di�erent initial node sets with di�erent numbers of initial adopters

k and di�erent threshold values q. We repeat the experiments ten

times and show representative plots in Figure 2. We see that the

number of infected nodes is maximized when we select the initial

nodes among the overlapped nodes. Also, if we constructV0 using

the non-overlapped nodes, the number of infected nodes is even

less than the random selection. �is indicates that whether a node

is an overlapped node or not is an important factor to determine

the success of information spreading, and the overlapped nodes

tend to e�ectively spread the information through the network.

To investigate the roles of overlapped edges in information dif-

fusion, we now removemr edges in the network in three ways: (i)

random edges, (ii) non-overlapped edges, and (iii) overlapped edges.

�at is, we removemr edges randomly, or removemr edges among

non-overlapped edges, or remove mr edges among overlapped

edges. We use the ground-truth communities, and setmr = 0.25m
wherem is the total number of edges in the network (i.e., we remove

a quarter of the edges). Given a �xed set of randomly chosen initial

adopters, we count the number of infected nodes in Figure 3 by vary-

ing the threshold value q. We see that the information is not spread

well when the overlapped edges are removed. �us, we can infer

that the overlapped edges have much contributions to information

di�usion than the randomly selected edges and the non-overlapped

edges. All these results imply that the overlapped nodes and the

overlapped edges are crucial in information propagation through

the network.

7 CONCLUSIONS
We analyze various characteristics of the overlapped nodes and the

overlapped edges by conducting empirical studies on the ground-

truth and algorithmic overlapping communities. We show that high-

overlap nodes have low clustering coe�cients–they bridge di�erent
communities, which indicates that they might play as structural

holes in a network. Also, we �nd that when networks evolve over

time, the new links tend to be formed within overlapped regions

of the graph. Finally, we observe that the overlapped nodes and

the overlapped edges play a critical role in spreading information

throughout the network. We expect that our investigations can

provide useful intuition and insight for many practical applications

including link prediction and information propagation models.
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