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Abstract. Social network analysis has become a major research area
that has impact in diverse applications ranging from search engines to
product recommendation systems. A major problem in implementing so-
cial network analysis algorithms is the sheer size of many social networks,
for example, the Facebook graph has more than 900 million vertices and
even small networks may have tens of millions of vertices. One solu-
tion to dealing with these large graphs is dimensionality reduction using
spectral or SVD analysis of the adjacency matrix of the network, but
these global techniques do not necessarily take into account local struc-
tures or clusters of the network that are critical in network analysis. A
more promising approach is clustered low-rank approximation: instead
of computing a global low-rank approximation, the adjacency matrix is
first clustered, and then a low-rank approximation of each cluster (i.e.,
diagonal block) is computed. The resulting algorithm is challenging to
parallelize not only because of the large size of the data sets in social
network analysis, but also because it requires computing with very di-
verse data structures ranging from extremely sparse matrices to dense
matrices. In this paper, we describe the first parallel implementation of
a clustered low-rank approximation algorithm for large social network
graphs, and use it to perform link prediction in parallel. Experimental
results show that this implementation scales well on large distributed-
memory machines; for example, on a Twitter graph with roughly 11
million vertices and 63 million edges, our implementation scales by a
factor of 86 on 128 processes and takes less than 2300 seconds, while
on a much larger Twitter graph with 41 million vertices and 1.2 billion
edges, our implementation scales by a factor of 203 on 256 processes with
a running time about 4800 seconds.

Keywords: Social network analysis, link prediction, parallel computing,
graph computations, clustered low-rank approximation.

� This work was started when Berkant Savas was a postdoctoral researcher in ICES,
University of Texas at Austin.

H. Kasahara and K. Kimura (Eds.): LCPC 2012, LNCS 7760, pp. 76–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Parallel Clustered Low-Rank Approximation 77

1 Introduction

Networks are increasingly used to model mechanisms and interactions in a wide
range of application areas such as social network analysis, web search, product
recommendation, and computational biology. Not surprisingly, the study of large,
complex networks has attracted considerable attention from computer scientists,
physicists, biologists, and social scientists. Networks are highly dynamic objects;
they grow and change quickly over time through the additions of new vertices and
edges, signifying the appearance of new interactions in the underlying structure.
For example, a specific network analysis problem is link prediction, where the
task is to predict the presence or absence of a link between certain pairs of
vertices, based on observed links in other parts of the networks [15].

One of the most important issues in addressing such network analysis prob-
lems is the sheer size of the data sets; for example, Facebook has over 900
million monthly active users, and even relatively small networks may have mil-
lions of vertices and edges. One solution to deal with these large scale networks
is dimensionality reduction, which aims to find more compact representations of
data without much loss of information. Principal Component Analysis (PCA)
and low-rank approximation by truncated Singular Value Decomposition (SVD)
are well-known techniques for dimensionality reduction [14,10]. ISOMAP [28]
and locally linear embedding [24] are also widely used when we need to retain
the non-linear property or manifold structure of the data.

However, these global dimensionality reduction techniques do not necessarily
take into account local structure such as clusters in the network that are crucial
for network analysis. Specifically, global techniques are likely to extract infor-
mation from only the largest or a few dominant clusters, excluding information
about smaller clusters. This is not desirable since different clusters usually have
distinct meanings. We need to extract some information from every cluster re-
gardless of its size to preserve important structural information of the original
network in a low-dimensional representation. This is the motivation of a recently
proposed method called clustered low-rank approximation [25], which reflects the
clustering structure of the original network in the low-rank representation of the
network. It extracts clusters, computes a low-rank approximation of each clus-
ter, and then combines together the cluster approximations to approximate the
entire network.

Unfortunately, the only available implementation of the clustered low-rank
approximation is a sequential implementation, which precludes its use for pro-
cessing large scale data sets for two reasons: (1) when the network size is huge,
the network usually does not fit into the memory of a single machine, and (2)
the running time can be substantial.

In this paper, we describe the first parallel implementation of clustered low-
rank approximation, and show its application to link prediction on large scale
social networks. It is a challenging problem to develop a parallel algorithm for
the clustered low-rank approximation since it requires computing with very di-
verse data structures ranging from extremely sparse matrices to dense matrices.
Experimental results show that our parallel implementation scales well on large
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distributed-memory machines; for example, on a Twitter graph, a standard data
set in the social networks area with roughly 11 million vertices and 63 million
edges, our implementation scales by a factor of 86 on 128 processes. The whole
procedure, including link prediction, takes less than 2300 seconds on 128 pro-
cesses. On a much larger Twitter graph with 41 million vertices and 1.2 billion
edges, our current algorithm produces encouraging results with a scalability of
203 on 256 processes. In this case, the running time is about 4800 seconds.

The rest of this paper is organized as follows. In Section 2, we present the
clustered low-rank approximation algorithm in detail, and introduce the link
prediction problem. In Section 3, we describe our parallel algorithm. We present
our experimental results in Section 4, and we briefly review some related work
in Section 5. Finally, we state our conclusions in Section 6.

2 Preliminaries

In this section, we describe the clustered low-rank approximation method pro-
posed in [25], and introduce the problem of link prediction in social network
analysis. Throughout the paper, we use capital letters to represent matrices,
lower-case bold letters to represent vectors, and lower-case italics to represent
scalars. Note that the terms graph and network are used interchangeably.

2.1 Clustered Low-Rank Approximation

A graph G = (V , E) is represented by a set of vertices V = {1, . . . ,m} and a set
of edges E = {eij |i, j ∈ V} where eij denotes an edge weight between vertices i
and j. The corresponding adjacency matrix of G is represented by A = [aij ] such
that aij = eij if there is an edge between vertices i and j, and 0 otherwise. Note
that A is an m×m matrix. For simplicity, we focus our discussion on undirected
graphs, which implies that the adjacency matrix of the graph is symmetric.

One of the standard and very useful methods for dimensionality reduction is
obtained by spectral or SVD analysis of the adjacency matrix A. For example,
if the graph is undirected (A is symmetric), the rank-k spectral approximation
of A can be computed by eigendecomposition as follows:

A ≈ V ΛV T , (1)

where V = [v1, . . . ,vk], Λ = diag(λ1, . . . , λk) is a k × k diagonal matrix, and
λ1, . . . , λk are the largest eigenvalues (in magnitude) of A, v1, . . . ,vk are the cor-
responding eigenvectors of A. One benefit of the spectral approximation is that
it gives a globally optimal low-rank approximation of A for a given rank. On the
other hand, a drawback with spectral analysis and SVD is that they do not neces-
sarily take into account local structures, such as clusters, of the network that are
important for network analysis. These local structures (clusters) of the network
are usually discovered by graph clustering which seeks to partition the graph into
c disjoint clusters V1, . . . ,Vc such that

⋃c
i=1 Vi = V . Suppose that A is an m ×m

adjacencymatrix, and that we cluster the graph into c disjoint clusters.We usemi
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to denote the number of vertices in the cluster i. By reordering vertices in order of
their cluster affiliations, we can represent them×m adjacencymatrixA as follows:

A =

⎡

⎢
⎣

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

⎤

⎥
⎦ , (2)

where each diagonal block Aii, for i = 1, . . . , c, is an mi × mi matrix that can
be considered as a local adjacency matrix for cluster i. The off-diagonal blocks
Aij with i �= j, represent the set of edges between vertices belonging to cluster
i and cluster j. Note that Aij is mi ×mj matrix. Figure 1 shows the adjacency
matrix of an arXiv network in the block form of (2). In the figure, a blue dot
represents a non-zero entry of the matrix. Observe that the non-zeros (links)
in the adjacency matrix are concentrated in the diagonal blocks Aii, while the
off-diagonal blocks are much more sparse.

Fig. 1. Clustering structure of an arXiv network. Note that the diagonal blocks are
much denser than the off-diagonal blocks.

In the clustered low-rank approximation framework, we first cluster a given
network. Then, we independently compute a low-rank approximation of each
cluster which corresponds to a diagonal block Aii. With a symmetric matrix A
as in (2), we can compute the best rank-k approximation of each Aii as follows:

Aii ≈ ViDiiV
T
i , i = 1, · · · , c, (3)

where Dii is a diagonal matrix with the k largest (in magnitude) eigenvalues of
Aii, and Vi is an orthogonal matrix with the corresponding eigenvectors.

Subsequently, the different cluster-wise approximations are combined together
to obtain a low-rank approximation of the entire adjacency matrix. That is,

A ≈

⎡

⎢
⎣

V1 · · · 0
...

. . .
...

0 · · · Vc

⎤

⎥
⎦

⎡

⎢
⎣

D11 · · · D1c

...
. . .

...
Dc1 · · · Dcc

⎤

⎥
⎦

⎡

⎢
⎣

V1 · · · 0
...

. . .
...

0 · · · Vc

⎤

⎥
⎦

T

≡ V̄ D̄V̄ T, (4)

where Dij = V T
i AijVj , for i, j = 1, . . . , c, which makes D̄ optimal in the least

squares sense.
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Fig. 2. Left panel shows an illustration of the regular spectral approximation A ≈
V ΛV T. Right panel shows an illustration of the clustered low-rank approximation A ≈
V̄ D̄V̄ T from (4). In both cases V and V̄ are “long-thin” and they both use the same
amount of memory as only the diagonal blocks of V̄ are stored.

With a rank-k approximation of each cluster Aii, we can observe that the
clustered low-rank approximation has rank ck. As a result, compared with a
regular rank-k approximation of A, we see that the rank in the clustered low-
rank approximation is increased by a factor of c. However, a key observation is
that V̄ is a block diagonal matrix and uses exactly the same amount of memory
as a regular rank-k approximation of A, as only the non-zero Vi blocks are stored
while zero blocks of V̄ are not stored. A pictorial representation of a regular rank-
k approximation and the clustered low-rank approximation is given in Figure 2.

There are a number of benefits of clustered low rank approximation com-
pared to spectral regular low-rank approximation: (1) the clustered low-rank
approximation preserves important structural information of a network by ex-
tracting a certain amount of information from all of the clusters; (2) it has been
shown that the clustered low-rank approximation achieves a lower relative er-
ror than the truncated SVD with the same amount of memory [25]; (3) it also
has been shown that even a sequential implementation of clustered low rank
approximation [25] is faster than state-of-the-art algorithms for low-rank matrix
approximation [20]; (4) improved accuracy of clustered low-rank approximation
contributes to improved performance of end tasks, e.g., prediction of new links
in social networks [26] and group recommendation to community members [29].

2.2 Link Prediction in Social Networks

Link prediction [21] is one of the important tasks in social network analysis.
Link prediction is the problem of predicting formation of new links in networks
that evolve over time. This problem arises in applications such as friendship
recommendation in social networks [26], affiliation recommendation [29], and
prediction of author collaborations in scientific publications [23].

In social network analysis, the Katz measure [18] is a widely used proximity
measure between the vertices (actors). In an undirected social network A, the
Katz measure can be represented as a matrix function Katz(A), where the (i,j)-
th element represents the value of a proximity between actor i and actor j, as
follows:
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Katz(A) = βA+ β2A2 + β3A3 + ... =

∞∑

k=1

βkAk, (5)

where β < 1/‖A‖2 is a damping parameter.
Given a network, we sort all the pairs of vertices according to the Katz scores

in descending order. By selecting top-k pairs which do not appear in the cur-
rent network, we predict k links that are likely to be formed in the future. Note
that this Katz computation is infeasible when the network size is very large,
since it requires O(m3) time where m is the number of vertices in the network.
However, the computation becomes feasible to approximate by leveraging the
clustered low-rank approximation. Suppose that A is represented as (4) by using
the clustered low-rank approximation. Then, the Katz measure can be approxi-
mated by:

Katz(A) ≈ K̂ =

kmax∑

k=1

βk(V̄ D̄V̄ T )
k
= V̄ (

kmax∑

k=1

βkD̄k)V̄ T ≡ V̄ P̄ V̄ T (6)

3 Parallelization Strategy

In this section, we describe the parallelization strategy for each major phase
of the clustered low-rank approximation algorithm: (i) graph clustering, (ii) ap-
proximation of diagonal blocks (clusters), and (iii) approximation of off-diagonal
blocks (inter-cluster edges). We also describe how the parallel low-rank approx-
imation algorithm can be used to solve a parallel link prediction problem on
social networks.

On distributed memory machines, a graph is stored across different processes
such that each process owns a subset of vertices and their adjacency lists. We
use the term local vertices to designate the vertices each process owns.

3.1 Parallel Graph Clustering

Recall that for a given graph G = (V , E), graph clustering (also called graph
partitioning) seeks to partition the graph into c disjoint clusters V1, . . . ,Vc such
that

⋃c
i=1 Vi = V . We use the term clusters and partitions, interchangeably.

Parallelization of graph clustering algorithms has long been recognized as a
difficult problem. The state-of-the-art parallel library for graph clustering and
partitioning is ParMetis [17], which is designed to deal with large scale graphs
on distributed memory machines. However, ParMetis was designed for clustering
and partitioning graphs that arise in computational science applications, and it
does not perform well on social network graphs, which have a very different
structure. For example, ParMetis could not cluster one of our data sets which
has 40 million vertices and 1 billion edges due to lack of memory. Therefore, as
one variation of the algorithm proposed in [30], we developed a custom parallel
graph clustering algorithm which (i) scales well for social network graphs, and
(ii) produces comparable quality clusters with ParMetis for graphs on which
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ParMetis is successful. We name our new parallel graph clustering algorithm
PEK1. PEK consists of four phases: (1) extraction of a representative subgraph,
(2) initial partitioning, (3) partitioning propagation and refinement, and (4)
recursive partitioning.

Extraction of a Representative Subgraph. From a given graph, we first
select vertices whose degrees are greater than a certain threshold. These vertices
induce a representative subgraph of the original graph, which is constructed with
these selected vertices and the edges between them. Note that we can typically
designate a degree threshold so that a desired number of vertices is included in
the subgraph.

This step is easy to parallelize. First of all, each process scans its local ver-
tices to select vertices and then communicates with other processes to decide
the location of the selected vertices. According to the location information, a
subgraph is created and distributed across different processes.

Initial Partitioning. The extracted subgraph is clustered using ParMetis. The
runtime of this initial partitioning step only takes a small fraction of the total run-
time if the extracted subgraph is very small compared to the original graph.When
a network follows a power-law degree distribution, which is a well-known property
of social networks, a very small number of high-degree vertices cover a large por-
tion of the edges in the entire network. So, we usually extract a small number of
vertices from the original graph, which are likely to govern the overall structure of
the entire network, and then cluster this small network using ParMetis.

Partitioning Propagation and Refinement. At this point, the vertices of
the extracted subgraph have been assigned to clusters. These vertices are consid-
ered to be the “seeds” for clustering the entire graph. Starting from vertices of
the extracted subgraph, we visit the rest of the vertices in the original graph in
a breadth-first order. To reduce communication among processes, each process
only considers its local vertices when doing a breadth-first traversal. When we
visit a vertex, we assign the vertex to some cluster by applying a weighted kernel
k-means (WKKM) algorithm. We will explain the WKKM algorithm in detail
below. Once we assign all the vertices of the original graph to some clusters, we
refine the clustering using the WKKM algorithm repeatedly.

It has been shown that a general weighted kernel k-means objective is mathe-
matically equivalent to a weighted graph clustering objective [13]. Therefore, we
can optimize a weighted graph clustering objective by running the WKKM algo-
rithm. At a high level, this algorithm computes the distance between a vertex and
the centroid of each of the clusters, and assigns each vertex to its closest cluster.

To describe the WKKM algorithm in detail, we introduce some notation. Re-
call that for a given graph G = (V , E), where V = {1, . . . ,m} and E = {eij |i, j ∈
V}, the corresponding adjacency matrix of G is represented by A = [aij ] such
that aij = eij , the edge weight between i and j, if there is an edge between

1 The abbreviation PEK represents two key concepts of our Parallel graph clustering
algorithm: Extraction of graph, and weighted Kernel k -means.
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i and j, and 0 otherwise. Now, let us define links(Vp,Vp) to be the sum of
the edge weights between vertices in Vp for p = 1, ..., c, i.e., links(Vp,Vp) =∑

i∈Vp,j∈Vp
aij . Similarly, links(x̂,Vp) denotes the sum of the edge weights be-

tween a vertex x̂ and the vertices in Vp. Also, we define degree(Vp) to be the
sum of the edge weights of vertices in Vp, i.e., degree(Vp) = links(Vp,V). Finally,
we use x̂ to denote a vertex, and ŵ to denote the degree of the corresponding
vertex.

There can be many variations of the WKKM algorithm when applying it
to a graph clustering problem. In our experiments, we measure the distance
between a vertex x̂ and a cluster Vp, denoted by dist(x̂,Vp), using the following
expressions (detailed explanation about how this distance measure is derived is
stated in [30]):

dist(x̂,Vp) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŵ · degree(Vp)

(degree(Vp)− ŵ)

(
links(Vp,Vp)

degree(Vp)
2 − 2links(x̂,Vp)

ŵ · degree(Vp)

)

, if x̂ ∈ Vp,

ŵ · degree(Vp)

(degree(Vp) + ŵ)

(
links(Vp,Vp)

degree(Vp)
2

− 2links(x̂,Vp)

ŵ · degree(Vp)

)

, if x̂ /∈ Vp.

(7)

Once we compute the distance between a vertex and the clusters, we assign the
vertex to the closest cluster. If a vertex moves from its current cluster to an-
other cluster, the centroids of the current cluster and the new cluster need to be
updated immediately. However, since the cluster centroids are globally shared,
the updates will serialize the algorithm. To avoid this serialization, we synchro-
nize the cluster centroids less frequently. In our experiments, we synchronize
the centroids of clusters once all of the processes finish considering their local
vertices.

In summary, given the current cluster information, each process assigns its
local vertices to their closest clusters. After this, the cluster information is up-
dated. This procedure is repeated until the change in the WKKM objective value
is sufficiently small or the maximum number of iterations is reached.

Recursive Partitioning. If we observe very large clusters, we can further
partition the clusters by recursively applying the above procedures until all the
clusters are small enough. To do the recursive partitioning on the large clusters,
we need to extract the large clusters from the original graph. Usually, each
extracted cluster is not necessarily a single connected component. Therefore, we
first find all components in the extracted clusters. If the size of a component
is larger than a certain threshold, we recursively partition it using the WKKM
procedure. If the size of a component is near the threshold (i.e., a moderate-sized
component), we just leave it as a new cluster. Finally, we form new clusters by
merging small components. At the end, each cluster contains a reasonably large
number of vertices.

This recursive partitioning is required since subsequently each cluster is ap-
proximated using eigendecomposition of the corresponding submatrix (described
in Section 3.2). If a cluster is too large, the memory consumption increases
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significantly in the eigendecomposition step. Therefore we partition each cluster
until every cluster is small enough to be handled by a single process. In our
experiments, we recursively partition the graph until each cluster contains less
than 100,000 vertices.

3.2 Approximation of Diagonal Blocks

The clustering step is followed by a reordering of the vertices so vertices in the
same cluster are contiguously numbered. The adjacency matrix of the resulting
graph G has a block structure as in (2). Each Aii is the local adjacency ma-
trix of cluster i, and off-diagonal blocks Aij contain the edges between cluster i
and cluster j. Then each process computes the rank-k eigendecomposition ap-
proximation for each of the diagonal matrices Aii it owns according to (3); for
example, A11 ≈ V1D11V

T
1 .

Since each process can only access a limited amount of memory and computing
the eigen-decomposition requires fairly large amount of memory, it is better to
compromise the balance of the memory usage and the computation time across
processes. Therefore, we assign clusters to processes using a static list scheduling
approach. All the clusters are put into an ordered list where the priority of each
cluster Aii is determined by (the number of non-zero entries in Aii) × k. Each
process is associated with a weight. The clusters are repeatedly extracted from
the list and assigned to the process with the current minimum weight. Whenever
a cluster is assigned to a process, its weight is increased by an amount equal to
the cluster’s priority. Since this computation is so small that every process can
simultaneously compute the assignment. After the assignment, we redistribute
the graph so that the vertices belonging to the same cluster are aggregated into
the same process.

The matrices Vi in the low-rank approximation (see Figure 2) will, in general,
be dense matrices. They are typically small enough so that they fit on any node
of the distributed-memory machine, so we do not distribute individual Vi’s across
processes, reducing communication further.

3.3 Approximating Off-Diagonal Blocks

The approximations of the off-diagonal blocks Aij is given by Aij ≈ ViDijV
T
j

where Dij = V T
i AijVj . Given that all Vi are computed in the previous step,

what remains is to compute Dij for i, j = 1, 2, . . . , c and i �= j. Recall that
all Vi are dense matrices and off-diagonal blocks Aij are sparse matrices. It
follows that matrix products of the type V T

i Aij or AijVj result in dense matrices.
Consequently, computation of eachDij involves two multiplications: one between
a dense matrix and a sparse matrix, and the other between two dense matrices.

Since the graph G is undirected, we can exploit the symmetry of its adjacency
matrix representation. In this case, we only need to compute Dij or Dji, as the
other can be easily obtained with a transpose operation. We define job(i, j) as

computing Dij (i < j), so the total number of jobs is c(c−1)
2 . From Section 3.2,
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p1

p2

p3

c1

c2

c3

c4

(p1,p2)

(p2,p3)

(p1,p3)

(p3,p3)

(p2,p3)

(p1,p3)

Z
Z

Z
Z

Fig. 3. An example where a pair (pi, pj) represents a job shared by processes pi and
pj in approximation of off-diagonal blocks

it is easy to see that each process contains Aij and Vi for the clusters it owns. In
order to compute Dij , we require the matrices Vi, Aij , and Vj . In the easy case,
where a process which owns Aij and Vi, also owns the matrix Vj as well, Dij

can be computed without any communication. Otherwise, some communication
is required between the process owning Vi (and Aij) and the process owning
Vj . Therefore, the jobs can be categorized as the ones which can be performed
independently and those which need some communication between processes. For
the former type, all of Vi, Vj , Aij , and Aji are located in the same process and
we call them private jobs of the owner process. The latter is a more complicated
scenario in which Aij and Vi are co-located in one process while Aji and Vj

are co-located in another process. Therefore, either process can execute job(i, j)
by fetching the required matrices from the other process. We call these shared
jobs between the two processes. Since jobs take different amounts of time, a
challenging problem that arises here is to evenly divide the shared jobs between
every pair of processes, with the aim of minimizing communication and achieving
an ideal load balance.

Figure 3 is an example to illustrate this problem. Figure 3 shows a matrix
representing the block view of A. Each entry of this matrix represents Aij . In
this example, graph A is partitioned into four clusters. Each row of the matrix
can be regarded as a cluster including edges that connect to other clusters,
denoted as ci. There are three processes p1, p2, and p3. Process p1 owns cluster
c1, p2 owns cluster c2, and p3 owns clusters c3 and c4. The pair (pi,pj) inside
each entry in Figure 3 represents that the job (approximation of this entry) can
be computed by either process i or process j.

We build a dynamic load balancing framework for performing the jobs. For
each pair of processes, we create a job queue storing the shared jobs between
them. A job queue is a priority queue where jobs are ordered by the amount
of work. Each process first works on its private jobs. Once its private jobs are
finished, the process starts to ask for jobs from a master process pmaster dedi-
cated to scheduling jobs. Whenever a process p asks for a new job, pmaster goes
through all job lists that involve p, picks the job queue with the most jobs, ex-
tracts the largest job in that job list, and then hands it to the process p. When



86 X. Sui et al.

the process p receives the job, it fetches the corresponding Vj from the process
owning Vj using RDMA (Remote Direct Memory Access).

Once this stage is complete, we have computed all necessary factors to ap-
proximate A, i.e., A ≈ Â = V̄ D̄V̄ T, as in (4). In particular, the approximation
of each block Aij in (2) is given by Aij ≈ Âij = ViDijV

T
j , for i, j = 1, . . . , c.

3.4 Parallel Computation of the Katz Measure and Link Prediction

Now, we describe how we compute the Katz measure in parallel, and perform
parallel link prediction. Recall (6). The computation of the term

∑kmax

k=1 βkD̄k

requires a distributed dense matrix multiplication since D̄ is a dense matrix.
Parallel dense matrix multiplication has been fairly well understood and there are
several efficient libraries available. We use the Elemental Matrix class library [2]
to perform this step and we set kmax = 6 in the experiments. In terms of the
block-wise view as in (4), we can rewrite (6) as follows:

K̂ = V̄ P̄ V̄ T ≡

⎡

⎢
⎣

V1 · · · 0
...

. . .
...

0 · · · Vc

⎤

⎥
⎦

⎡

⎢
⎣

P11 · · · P1c

...
. . .

...
Pc1 · · · Pcc

⎤

⎥
⎦

⎡

⎢
⎣

V1 · · · 0
...

. . .
...

0 · · · Vc

⎤

⎥
⎦

T

, (8)

Then, K̂ij is computed as follows: K̂ij = ViPijV
T
j , for i, j = 1, . . . , c. We dis-

tribute Pij to the same process as Aij . Due to the symmetry of P̄ , computing K̂
is very similar to the approximation of off-diagonal matrices in Section 3.3, so we
adopt a similar parallelization stratgy. Since K̂ is a m×m matrix, it is infeasible
to compute the whole matrix if m is very large. Therefore, we only compute a
subset of K̂ and predict links based on the sampled subset. The details of our
sampling method is stated in Section 4.

4 Experimental Results

In this section, we present and analyze experimental results on a large-scale par-
allel platform at the Texas Advanced Computing Center (TACC), Ranger [5].
Ranger has 3,936 nodes, and each node is equipped with a 16-core AMD Opteron
2.2GHz CPU and 32GB memory. Ranger uses InfiniBand networks with 5GB/s
point-to-point bandwidth. The MPI library on Ranger is Open MPI 1.3. Our
implementation is written in C++. We use ARPACK++ [1] for the eigendecom-
positions of diagonal blocks, GotoBLAS 1.30 [3] for the dense matrix multipli-
cations involving the off-diagonal blocks, and Elemental Matrix class library [2]
for the dense matrix multiplications for the Katz measure.

4.1 Data Sets

We use three different social graphs which are summarized in Table 1. LiveJour-
nal is a free online community with almost 10 million members, and it allows
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members to select other members as their friends. Twitter is an online social
networking website where members follow other members they are interested
in. In our experiments, we extract the largest connected component from each
of the network. Originally, each of these networks were directed networks. So,
we transformed them into undirected graphs by adding additional edges. In
the experiments, the degree thresholds for PEK are 42 (Soc-LiveJournal), 200
(Twitter-10M) and 2500 (Twitter-40M). The number of vertices of the extracted
subgraph is less than 5% of the original graph in all cases.

Table 1. Detailed information of the graph data sets

Data set #Vertices #Edges Description

soc-LiveJournal 3,828,682 39,870,459 LiveJournal on social network [6].
Twitter-10M 11,316,799 63,555,738 Crawled Twitter graph from [7].
Twitter-40M 41,652,230 1,202,513,046 Crawled Twitter graph from [19].

4.2 Parallel Performance Evaluation

We use one process as the scheduling server and the other processes as the
workers in the phases of computing the approximation of off-diagonal blocks
and link prediction. In other phases, the scheduling process stays idle and does
not participate in computation in any phase. The graphs are initially randomly
distributed among all the processes other than the scheduling process.

Figure 4 shows the performance of our parallel implementation of the clustered
low-rank approximation, on the soc-LiveJournal, Twitter-10M and Twitter-40M
graphs. All these social network graphs are too large to be processed in a single
node of Ranger. Therefore, we run each graph on the smallest number of nodes
on which the program finishes successfully, and then measure the performance
as the number of nodes increases. We use only one MPI process on each node to
enable us to measure performance without interference from other processes in
the same node. From Figure 4, we see that our implementation scales very well
on the three different sizes of real social graphs. A speedup of 68 is achieved on
64 processes for soc-LiveJournal, a speedup of 86 is achieved on 128 processes
for Twitter-10M and 203 on 256 processes for Twitter-40M. The super-linear
speedup is mainly due to the cache effects of matrix multiplication. For soc-
LiveJournal and Twitter-10M, performance levels off after 64 nodes, but this
is mainly because the problem size is relatively small compared to the number
of processes. This is clear from the performance of Twitter-40M: it consistently
scales up to 256 processes.

Figure 5 shows how much time is spent on each of the major phases of the
algorithm: (i) partitioning, (ii) computing diagonal blocks, (iii) computing the
off-diagonal blocks Dij ’s, and (iv) link prediction. We divide the link predic-
tion phase into two steps: (a) computing the P̄ matrix in (6) which requires
dense matrix multiplication, and (b) computing K̂ij = ViPijV

T
j in (8). We la-

bel (a) as MatrixPower, and label (b) as ScoreComputation in Figure 5.
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Fig. 4. Runtime and Speedup for soc-LiveJournal, Twitter-10M, and Twitter-40M
graphs, where c = 500 and k = 100 for soc-LiveJournal and Twitter-10M, and c = 1000
and k = 100 for Twitter-40M

The MatrixPower dominates the running time since this step involves large
dense matrix multiplication (square matrix, each dimension is c × k where c is
the number of clusters and k is the number of eigenvalues). To make the runtime
of other phases visible in the graph, we show MatrixPower time in a separate
figure from other phases.

From Figure 5, we see that most of the phases scale well with increasing num-
bers of processes, especially with our new parallel graph partitioning algorithm.
For soc-LiveJournal and Twitter-10M, the runtime of the diagonal phase does not
decrease beyond 32 processes.There are two reasons: first, the clustering algorithm
is not deterministic, so running with different number of processes may cluster
the graph differently. Cluster sizes will affect the runtime significantly since the
complexity of eigendecomposition in the diagonal phase does not increase linearly
with cluster size. Second, since the number of eigendecompositions is equal to the
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number of clusters, the average number of clusters assigned to each process will
become smaller when the number of processes becomes large. So, the space avail-
able for load balancing among processes to hide unbalanced clustering effects will
be less. This problem may be alleviated by dynamic load balancing which we will
explore in the future. On the other hand, in the MatrixPower step, the Ele-
mental library [2] we use for parallel dense matrix multiplication does not scale
well after 64 processes for small matrix sizes (50, 000× 50, 000 for soc-LiveJournal
and Twitter-10M), while it can scale consistently to 256 processes for larger sizes
(100, 000×100, 000 forTwitter-40M).This phase dominates the total runtime, and
it is themain reasonwhy the running time of soc-LiveJounrnal is not improved after
128 nodes.

Load Balancing. Figure 6 shows the load balancing results of three phases:
diagonal, off-diagonal and link prediction. The red and green bars denote the
maximum and minimum time processes take, respectively. The dynamic load
balancing framework is effective in most of the cases for approximating off-
diagonal blocks and link prediction. For small number of processes, the diagonal
phase is also balanced. When the number of processes increases, the load among
processes starts to become unbalanced. As mentioned before, this is mainly due
to the very unbalanced partitions.

4.3 Evaluation of Clustering Algorithm

Figure 7 compares our clustering algorithm (PEK) with ParMetis on soc-Live
Journal and Twitter-10M, using two measures: (i) the quality of the partition,
and (ii) the running time of the algorithm. ParMetis fails to cluster Twitter-40M
graph on Ranger because the memory at each node is not enough. To evaluate the
quality of clusters, we use two standardmeasures: the normalized cut measure and
the cut-size measure. These measures are defined as:

NormCut =
c∑

k=1

links(Vk,V\Vk)

degree(Vk)
,Cut-Size =

c∑

k=1

links(Vk,V\Vk). (9)

where c is the number of clusters, A is the adjacency matrix of a graph
G=(V , E), links(Vk,V\Vk) =

∑
i∈Vk,j∈{V\Vk} aij , and degree(Vk) = links(Vk,V)

for k = 1, 2, ..., c. By definition, the normalized cut is upper-bounded by the num-
ber of clusters. Lower normalized cut value indicates better quality of clusters.
In Figure 7, we divide the normalized cut by the total number of clusters since
PEK probably makes more clusters than the designated number of clusters due
to its recursive partitioning phase. We see that PEK performs a little better than
ParMetis on both of soc-LiveJournal and Twitter-10M in terms of the normal-
ized cut. We also divide the cut-size by the total number of clusters, and present
the results in Figure 7. Note that lower cut-size indicates better quality of clus-
ters. We can see that the cluster quality of PEK and ParMetis are comparable
in terms of the cut-size.
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Fig. 7. Comparison between our clustering algorithm (PEK) with ParMetis on soc-
LiveJournal and Twitter-10M. The number of clusters is 500. Since our implementation
needs one scheduling server for later phases, we leave one process to handle that for
both clustering algorithms in the experiments.

We see that PEK is much faster than ParMetis. For soc-LiveJournal, PEK
is two times faster than ParMetis on 128 processes. For Twitter-10M, PEK is
about seven times faster than ParMetis on 128 processes. Overall, PEK achieves
similar quality as ParMetis but can scale better than ParMetis to larger number
of processes and larger graphs.
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4.4 Evaluation of Link Prediction

We perform our experiments as follows. Given a network G = (V,E), a network
G′ = (V,E′) is obtained by randomly removing 30% of the links of G. We call
the removed links test links. Then, we compute the Katz scores on the network
G′. Since the networks we use are very large, we cannot compute the Katz scores
for all the vertex pairs. So, we sample a set of vertex pairs from G′, and compute
Katz scores on these sampled links. Let S denote the set of these sampled links.
We randomly sample a subset of the links which are incident to vertices that
are in the same cluster and whose degrees are larger than some threshold. The
justification for this sampling method is as follows: new links are more likely to
be formed within the same cluster and are more likely to be formed between
vertices whose degrees are larger than a certain threshold.

Let R denote the set of top-k scoring links (top-k recommended links). Then,
we evaluate our link prediction results by computing precision and recall which
are defined as follows:

Precision =
number of correctly predicted links

top-k recommendations
=

|(E − E′)
⋂

R|
|R| , (10)

Recall=
number of correctly predicted links

number of overlapped links between test and sampled links
=

|(E −E′)
⋂

R|
|(E − E′)

⋂
S| .

(11)

By definition, the upper bound of the recall measure is obtained by setting the
numerator as |R| (i.e., k). Higher precision and recall indicate better perfor-
mance. Table 2 shows precision and recall for the soc-LiveJournal and Twitter-
10M graphs with different ranks of approximations. We partition each graph
into 500 clusters. The only difference among the three rows is the rank of each
cluster. For soc-LiveJournal, we achieve 100% precision for predicting the top-
10 and top-100 links and 98% precision for predicting the top-1000 links using

Table 2. Link prediction evaluation on soc-LiveJournal and Twitter-10M. We compare
the precision and recall with different ranks of approximations. The graph is always
partitioned into 500 clusters. Three different rows represent different ranks of each
cluster, which results in different rank approximations of the whole graph. UB is the
upper bound for the recall. Note the upper bound differs in the experiments since we
use a new sample set for each case.

Graph Top-k Rank Precision Recall(UB) Graph Top-k Rank Precision Recall(UB)

SocLive 10 c500r50 100 0.002(0.002) Twitter-10M 10 c500r50 0 0(0.39)
c500r100 100 0.002(0.002) c500r100 100 0.389(0.389)
c500r200 0 0(0.002) c500r200 100 0.431(0.431)

100 c500r50 100 0.024(0.024) 100 c500r50 10 0.431(4.310)
c500r100 90 0.019(0.021) c500r100 30 1.167(3.891)
c500r200 30 0.006(0.021) c500r200 10 0.431(4.310)

1000 c500r50 98 0.234(0.239) 1000 c500r50 3 1.293(43.103)
c500r100 46 0.096(0.209) c500r100 10 3.891(38.910)
c500r200 40 0.083(0.208) c500r200 6 2.586(43.103)
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rank 500 × 50 (500 indicates the number of clusters, 50 indicates the rank of
each cluster). The recall is also very close to the upper bound. For Twitter-10M
graph, precision and recall measures are not as good as for soc-LiveJournal. A
contributing factor to this is that the overlap between E − E′ and S for the
Twitter-10M graph is very small, around 2600 overlapping links with a sample
size of 70 millions. (The overlap for soc-LiveJournal is around 500,000.) Even on
this setting, we can see that the precision for top-10 is still 100%, and top-100
is 30% for rank 500 × 100. This reflects the effectiveness of clustered low-rank
approximation approach.

5 Related Work

The study of parallel graph partitioning, which is a key component of parallel
clustered low-rank approximation, has a long history. The most commonly used
library is ParMetis [17]. However, ParMetis is not suitable for social networks
because ParMetis utilizes a multilevel coarsening approach which is not effective
in social networks. This multilevel coarsening is primarily designed for graphs
in scientific computing (e.g. finite element meshes) [8,27]. In order to overcome
this problem, we develop PEK which is described in Section 3. While PEK is
closely related to PGEM which is presented in [30], PEK is a custom cluster-
ing algorithm for clustered low-rank approximation framework. PEK includes
a recursive partitioning step which allows us to proceed to the next phase of
clustering phase. Furthermore, PEK utilizes ParMetis to cluster an extracted
graph while PGEM uses weighted kernel k-means.

Cong et al. [12] studied the problem of parallel connected components
implemented in UPC for distributed-memory systems. They started from a
PRAM-based algorithm and applied several optimizations for sparse graphs. We
implemented similar algorithm using MPI in our clustering algorithm. It takes
very small fraction of the total clustering time so we do not report it.

Low-rank approximation has been applied to the task of link prediction and
has been shown to be successful in practice [22]. Parallel eigendecomposition for
dense matrices on multiple machines has been well studied in, e.g., [11,9]. But
they are not suitable for large social networks because the adjacency matrices for
them are too large to be represented as dense matrices. Recently, [4,16] studied
the problem of large scale sparse eigensovler based on Hadoop.

Yoo et al. [31] studied level-synchronized breadth-first search on the Blue-
Gene machine. They performed 2D partitions. By optimizing message buffer
size and utilizing the processor topology, they achieved scalability of 2

√
p with p

processors on a very large graph. Their work indicates that exploring processor
topology information may be an important aspect for efficiency that we have
not explored in this paper.

6 Conclusions

In this paper, we present the first parallel implementation of clustered low-rank
approximation. We conduct experiments on distributed-memory machines, and
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the experimental results show that this parallel implementation is effective in
processing large-scale social network graphs with tens of millions of vertices and
hundreds of millions of edges. In particular, our parallel implementation scales
well according to the number of processes.

Our parallel implementation of clustered low rank approximation provides a
critical routine that is a key enabler for efficient analyses of social network graphs.
Presently, such analyses are performed in a brute-force manner on the entire
graph by using parallel processing in large data-centers; in contrast, low rank
approximations of these graphs enable analyses to be performed more efficiently
on a smaller graph that distills the essence of the original graph. However, most
current low rank approximation techniques compute a global approximation of
the graph, and ignore local structure, such as clusters, that must be preserved
in the low rank approximation for accurate analysis. Fortunately, the clustered
low rank approximation permits the computation of a structure-preserving low
rank approximation. Our parallel implementation of this algorithm enables the
full power of clustered low rank approximation to be brought to bear on huge
social networks for the first time.
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