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ABSTRACT
We consider the general k-way clustering problem in signed
social networks where relationships between entities can be
either positive or negative. Motivated by social balance the-
ory, the clustering problem in signed networks aims to find
mutually antagonistic groups such that entities within the
same group are friends with each other. A recent method
proposed in [13] extended the spectral clustering algorithm
to the signed network setting by considering the signed graph
Laplacian. This has been shown to be equivalent to finding
clusters that minimize the 2-way signed ratio cut. In this
paper, we show that there is a fundamental weakness when
we directly extend the signed Laplacian to the k-way clus-
tering problem. To overcome this weakness, we formulate
new k-way objectives for signed networks. In particular, we
propose a criterion that is analogous to the normalized cut,
called balance normalized cut, which is not only theoretically
sound but also experimentally effective in k-way clustering.
In addition, we prove that these objectives are equivalent to
weighted kernel k-means objectives by choosing an appropri-
ate kernel matrix. Employing this equivalence, we develop
a multilevel clustering framework for signed networks. In
this framework, we coarsen the graph level by level and re-
fine the clustering results at each level via a k-means based
algorithm so that the signed clustering objectives are opti-
mized. This approach gives good quality clustering results,
and is also highly efficient and scalable. In experiments,
we see that our multilevel approach is competitive to other
state-of-the-art methods, while it is much faster and more
scalable. In particular, the largest graph we have considered
in our experiments contains 1 million nodes and 100 million
edges — this graph can be clustered in less than four hun-
dred seconds using our algorithm.
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1. INTRODUCTION
Social network analysis has gained considerable attention

in recent years. These networks can be modeled as graphs
with nodes and edges, where nodes indicate individual ac-
tors and edges indicate the relationships between actors. In
many real social networks, there are not only positive rela-
tionships but also negative relationships. For example, on-
line news and review websites such as Epinions and Slashdot
allow users to approve or denounce others. These kinds of
networks can be modeled as signed networks where a posi-
tive relationship is denoted by a positive edge weight while
a negative relationship is denoted by a negative edge weight.

It has been shown that signed networks tend to have a
particular structure that is derived by the fact that rela-
tionships between entities tend to follow so-called“balanced”
patterns in signed networks [3, 9]. Motivated by social bal-
ance theory, the clustering problem in signed networks is to
find antagonistic clusters such that entities within the same
cluster have a positive relationship with each other and en-
tities between different clusters have a negative relationship
with each other. While much research on graph clustering
has been conducted on unsigned graphs which contain only
positive relationship information, it is yet to be explored
how many existing clustering algorithms can be extended
to signed networks. In particular, since the goal of clus-
tering changes when we consider signed networks, existing
unsigned clustering methods cannot be directly applied to
signed graph clustering.

Due to the massive size of real networks, scalability is
an important issue. For unsigned networks, several scalable
clustering algorithms have been proposed based on the mul-
tilevel framework [7, 11]. However, to the best of our knowl-
edge, there is no scalable multilevel clustering algorithm for
signed networks.

In this paper, we formulate new k-way objectives for signed
networks based on social balance theory. In particular, we
propose a criterion that is analogous to the normalized cut,
called balance normalized cut, which is not only theoretically
sound but also experimentally effective in k-way cluster-
ing. Furthermore, we show that these objectives are equiv-
alent to a general weighted kernel k-means objective. Using
this equivalence, we develop a fast multilevel clustering al-
gorithm for signed networks. In this multilevel algorithm,
clustering can be optimized level by level very efficiently.

The following are the contributions of our paper:
• We formulate new k-way objectives and kernels for

signed networks, and compare them with the signed
graph Laplacian considered in [13]. We also show a



fundamental weakness of the signed graph Laplacian
in k-way clustering problems.

• We show that our new k-way objectives are mathemat-
ically equivalent to a general weighted kernel k-means
objective. Using this equivalence, we show that the
graph clustering objectives of signed networks can be
optimized by using a kernel k-means like algorithm.

• Employing the equivalence between k-way graph clus-
tering and weighted kernel k-means objectives, we de-
velop a fast and scalable multilevel clustering algo-
rithm for signed networks. Our multilevel clustering
algorithm is comparable in accuracy to other state-
of-the-art methods while it is much faster and more
scalable.

This paper is organized as follows. In Section 2, we briefly
review some related work, and in Section 3, we state some
preliminaries. In Section 4, we show a weakness of the signed
graph Laplacian and introduce our new k-way objectives and
kernels for signed networks. Also, we prove the equivalence
between these objectives and a general weighted kernel k-
means objective. In Section 5, we embed our algorithm into
a multilevel framework, and explain our multilevel clustering
algorithm for signed networks. We show our experimental
results in Section 6, and state our conclusions in Section 7.

2. RELATED WORK
The clustering problem in signed networks can be dated

back to the 1950s. Cartwright and Harary [3, 9] introduced
the notion of social balance. They defined balanced triads,
and showed that a network which follows the balance notion
can be clustered into two perfect antagonistic groups. This
balance notion was generalized by Davis [4], who defined the
concept of a weakly balanced network, and showed that a
network can be partitioned into k antagonistic groups if it is
weakly balanced. In Section 3.3, we formally state balance
theory and weak balance theory.

Motivated by (weak) balance, many researchers have tried
to develop algorithms for clustering signed networks. For
example, Doreian et al. [8] proposed a local search strat-
egy which is similar to the Kernighan-Lin algorithm [12].
Yang at el. [17] proposed an agent-based method which ba-
sically conducts a random walk on the graph. Anchuri at el.
[1] proposed hierarchical iterative methods that solve 2-way
frustration and signed modularity objectives using spectral
relaxation at each hierarchy. On the other hand, Nikihil
at el. also consider the signed graph clustering problem,
though their formulation is motivated by correlation cluster-
ing [2]. They proposed two approximation algorithms and
proved approximation bounds. Different from these works,
our work starts with considering k-way signed cut and as-
sociation objectives which directly measure the quality of
clusters. Thereafter, we obtain k clusters by globally opti-
mizing these signed objectives.

The most relevant work to ours is a spectral method pro-
posed by Kunegis et al. [13], who showed that a signed ver-
sion of the 2-way ratio-cut problem can be solved by consid-
ering the so-called signed graph Laplacian. However, there is
a fundamental weakness when we directly extend the signed
Laplacian to the k-way clustering problem, which we will
discuss in detail in Section 4.1.

Another state-of-the-art framework for signed graph clus-
tering is based on a low rank model proposed by Hsieh et
al. [10]. They observe that matrix completion on signed net-
works can be thought as recovering the missing structure of

the network. Thus, in this framework they first complete
the network and derive low rank factors (for example, top k
eigenvectors) as representations of the signed network. Af-
terward, they run k-means on the low rank factors to derive
the clustering. We will compare this state-of-the-art ap-
proach with our proposed multilevel clustering algorithm in
Section 6.

Scalability is always an important issue for graph clus-
tering algorithms. For unsigned networks, many scalable
graph clustering algorithms make use of a multilevel frame-
work, such as Metis [11] and Graclus [7]. In the multilevel
framework, the input graph is repeatedly coarsened level by
level until the graph size becomes small enough. An initial
clustering is then performed on the coarsest graph. Finally,
the clustering result is refined as the graph is uncoarsened
level by level. Furthermore, Dhillon et al. [7] showed that a
weighted graph clustering objective is mathematically equiv-
alent to a general weighted kernel k-means objective, and
utilizing this equivalence into the multilevel framework can
make the clustering procedure very efficient. However, the
algorithms used in [7] cannot be directly applied to signed
networks, and the modifications are not trivial either.

3. PRELIMINARIES
In this paper, we use capital letters to denote matrices,

lowercase bold letters to denote vectors, and lowercase italics
to denote scalars. We use xc(i) to denote the ith element of
the vector xc when the vector has a subscript; otherwise, we
use xi to denote the ith element of the vector x.

In this section, we first review spectral clustering of un-
signed networks in Section 3.1. In Section 3.2, we introduce
weighted kernel k-means which has been shown to be effec-
tive in optimizing graph cut objectives of unsigned networks.
In Section 3.3, we state some basic concepts for signed net-
works. Finally, in Section 3.4, we introduce a state-of-the-art
spectral method that solves a 2-way signed network cluster-
ing problem.

3.1 Graph Cuts on Unsigned Networks
Let us consider k-way clustering on unsigned networks.

One of the most popular approaches to solving this prob-
lem is to consider some objective, such as graph association
or graph cuts, that quantifies the quality of clusters, and
derive a clustering result by maximizing or minimizing the
objective function. Here are some well-known objectives:

• Ratio Association objective aims to maximize the
number of edges within clusters relative to the size of
the cluster, where the size of a cluster is defined as
the number of nodes it contains. Precisely, the ratio
association objective may be written as:

max
{x1,...,xk}∈I

 

k
X

c=1

xT
c Axc

xT
c xc

!

,

where A is the network’s adjacency matrix, and the
constraint {x1, ...,xk} ∈ I means {x1, ...,xk} is a k-
cluster indicator set. Formally, an indicator set {x1, ...,xk}
is defined as a set of k vectors x1 . . .xk, such that:

xc(i) =

(

1, if node i ∈ πc,

0, otherwise,

with |πc| > 0, where πc denotes the cth cluster.

• Ratio Cut objective aims to minimize the number of
edges between different clusters relative to the size of



the cluster. It is known that the number of edges across
clusters can be captured by the graph Laplacian of A.
More precisely, let D be the diagonal degree matrix of
A, i.e. Dii =

Pn
j=1 Aij , then the graph Laplacian is

defined by L = D − A. The ratio cut objective is:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c Lxc

xT
c xc

!

. (1)

• Normalized Association and Normalized Cut ob-
jectives also consider within-cluster edges and between-
cluster edges, respectively. However, these objectives
are normalized by the volume of each cluster rather
than the number of nodes in each cluster. The vol-
ume of a cluster is defined as the sum of degrees of
nodes in the cluster. It has been shown that these two
normalized objectives are equivalent, i.e.,

max
{x1,...,xk}∈I

 

k
X

c=1

xT
c Axc

xT
c Dxc

!

≡ min
{x1,...,xk}∈I

 

k
X

c=1

xT
c Lxc

xT
c Dxc

!

.

(2)

In addition, under the special case k = 2, the ratio cut
objective (1) is equivalent to the following problem:

min
x

“

xT Lx
”

, (3)

where the 2-class indicator x has the following form:

xi =

(

p

|π2|/|π1|, if node i ∈ π1,

−
p

|π1|/|π2|, if node i ∈ π2,

with |π1|, |π2| > 0. See [5] for detailed proof.
Note that all the above formulated problems are NP-hard

problems [15]. In practice, these problems are usually solved
with spectral relaxation, which is known as spectral cluster-
ing [16]. Specifically, if we consider the relaxed problems
by dropping the combinatorial constraint {x1, ...,xk} ∈ I ,
then the top k eigenvectors will yield the optimal solution.
One way to round {x1, ...,xk} to a valid indicator set, we
treat each [x1(i), x2(i) . . . xk(i)] as a k-dimensional vector for
1 ≤ i ≤ n, and do k-means clustering on these n vectors.

Though spectral clustering works quite well in practice, it
suffers a scalability issue since computing eigenvectors can
be costly. In particular, the normalized objective usually
squeezes the spectrum of the matrix to a small range, which
makes the computation much more expensive due to the
smaller eigengaps.

3.2 Weighted Kernel K-means
Weighted kernel k-means is a generalized version of k-

means [7]. Given a set of vectors v1 . . .vn, the weighted
kernel k-means objective is defined as follows:

min
π1...πk

k
X

c=1

X

vi∈πc

wi‖φ(vi) − mc‖
2, (4)

where wi is a nonnegative weight of each vector vi, φ is a
non-linear mapping, and mc is the weighted centroid of πc

which is defined by:

mc =

P

vi∈πc
wiφ(vi)

P

vi∈πc
wi

.

Like the traditional k-means algorithm, weighted kernel
k-means computes the closest centroid for every node, and

Algorithm 1: Weighted Kernel k-means

Input: v1 . . .vn: data vectors, K: kernel matrix, k:
number of clusters, {πc}

k
c=1: initial clustering,

t: maximum number of iterations.
Output: {πc}

k
c=1: final clustering

• Initialize τ = 0.
• Do

1. For each v = v1 : vn and c = 1 : k, compute
D(vi,mc) using Equation (5).

2. Compute C∗ for each v defined by:
C∗(vi) := arg minc D(vi,mc).

3. Reform the clustering defined by:
πc = {vj |C∗(vj) = c}.

4. τ = τ + 1.

While not converged and τ < t

assigns the node to the closest cluster. After all the nodes
are considered, the centroids are updated. Given the Ker-
nel matrix K, where Kji = <φ(vj), φ(vi)>, the distance
between φ(vi) and mc, denoted as D(vi,mc), can be sim-
plified as follows:

D(vi,mc) = Kii −
2

P

j∈c wjKji
P

j∈c wj
+

P

j∈c

P

l∈c wjwlKjl

(
P

j∈c wj)2
.

(5)
This procedure is summarized in Algorithm 1.

It has been shown that all the objectives stated in Sec-
tion 3.1 are equivalent to the weighted kernel k-means ob-
jective by choosing appropriate kernels [7]. Therefore, we
can use the weighted kernel k-means algorithm to attempt
to optimize these graph clustering objectives without com-
puting eigenvectors.

3.3 Signed Networks and Social Balance
A signed network can be represented as an adjacency ma-

trix A that describes relationships between entities. For-
mally, the adjacency matrix A is defined as follows:

Aij

8

>

<

>

:

> 0, if relationship of (i, j) is positive,

< 0, if relationship of (i, j) is negative,

= 0, if relationship of (i, j) is unknown.

We can break A into its positive part A+ and negative part
A−. Formally, A+

ij = max(Aij , 0) and A−
ij = −min(Aij , 0).

By this definition, we have A = A+ −A−. For convenience,
in the remaining part of this paper, we will use the term
“network” as an abbreviation of signed network unless we
specify it is unsigned. In addition, similar to the conven-
tion in spectral clustering, we will focus our discussion on
undirected signed networks, i.e., A is symmetric.

The most prevailing theory related to signed networks is
social balance. The intuition of social balance can be inter-
preted as “a friend of my friend is my friend”, “an enemy
of my friend is my enemy”, and “an enemy of my enemy is
my friend”. We say that a graph is balanced if any part of
the graph does not violate this intuition. It is known that
if the network is balanced, then it has a clusterable global
structure:

Theorem 1 (Balance Theory [3, 9]). A network is
balanced iff (i) all of its edges are positive, or (ii) nodes can



be clustered into two groups such that edges within groups
are positive and edges between groups are negative.

In addition, Davis [4] proposed a weaker notion of balance,
called weak balance, that generalizes social balance. They
relax the balanced relationships by allowing an enemy of
one’s enemy to still be an enemy. Under such relaxation,
they show that a network which satisfies weak balance rules
can be clustered as follows:

Theorem 2 (Weak Balance Theory [4]). A network
is weakly balanced iff (i) all of its edges are positive, or (ii)
nodes can be clustered into k groups such that edges within
groups are positive and edges between groups are negative.

We then say that a network is k-weakly balanced iff it can
be divided into k antagonistic groups.

Motivated by Theorem 2, we now formally state the k-way
clustering problem in signed networks as follows. Given a
signed network, we are asked to partition the network into
k clusters such that most edges within clusters are positive
and most edges between clusters are negative. In addition,
to avoid partitioning where most clusters contain only a few
nodes, we prefer that clusters are of substantial size/volume.
A similar desire occurs in unsigned network clustering when
we consider normalized cut as the criterion [15].

3.4 Clustering via Signed Laplacian
Recently, Kunegis et al. [13] proposed a spectral method

for clustering of signed graphs by defining a signed graph
Laplacian. Let D̄ be the diagonal absolute degree matrix,
i.e., D̄ii =

Pn
j=1 |Aij |, then the signed Laplacian L̄ is defined

in [13] to be D̄−A. The signed Laplacian L̄ is always positive
semidefinite by the fact that ∀x ∈ R

n,

xT L̄x =
X

(i,j)

|Aij |(xi − sgn(Aij)xj)
2 ≥ 0. (6)

Now let us define k-way ratio cut for signed networks.
Given a signed network G, we define k-way ratio cut to
be equal to the sum of positive edge weights of edges that
lie between different clusters and the sum of negative edge
weights of all edges lie within the same cluster, normalized
by each cluster’s size as in (1) (also see (13) in Section 4.1).

In [13], it has been shown that the 2-way signed ratio
cut objective can be formulated as an optimization problem
with a quadratic form:

min
x

“

xT L̄x
”

, (7)

where the 2-class indicator x has the following form:

xi =

(

1
2
(
p

|π2|/|π1| +
p

|π1|/|π2|), if node i ∈ π1,

− 1
2
(
p

|π2|/|π1| +
p

|π1|/|π2|), if node i ∈ π2,

with |π1|, |π2| > 0. This objective has a similar form to
the original unsigned ratio cut objective (3). However, by
examining (7), we can verify that only negative edges within
the same cluster (Aij < 0 and xi = xj) and positive edges
between clusters (Aij > 0 and xi 6= xj) will contribute to
the objective function. See [13] for more details.

4. SIGNED GRAPH CUTS AND KERNELS
In this section, we propose new criteria and objectives, in-

cluding graph association and cut, for general k-way signed
graph clustering. We can derive the signed graph kernel cor-
responding to each objective. In addition, we show that we

can use the weighted kernel k-means algorithm to optimize
these objectives, by selecting the proper kernel matrix.

4.1 k-way Signed Objectives for Clustering
Before we introduce our proposed objectives, we show why

the signed Laplacian is hard to extend to the k-way cluster-
ing problem. While the signed Laplacian can be properly
used in 2-way clustering, it is not clear how we can extend
this definition to general k-way clustering. One intuitive
solution is to directly extend (7) to the following k-way ob-
jective:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c L̄xc

xT
c xc

!

. (8)

However, unlike in unsigned networks, this direct extension
suffers a weakness. To explain this weakness more clearly,
let us first consider the unsigned ratio cut. We can observe
that we use different representation for indicators (x in (3)
and {x1, ...,xk} in (1)) for 2-way objective and k-way objec-
tive. This generalization is valid because based on a 2-way
objective (3) with well-defined indicator x, we can properly
generalize it to k-way objective (1) by selecting another ap-
propriate representation for indicator set {x1, ...,xk}, such
that the cut criterion remains the same. Similarly, now given
a 2-way signed ratio cut objective (7), we aim to find an ap-
propriate setting of the indicator set {x1, ...,xk}, such that
the k-way objective (8) with such setting also minimizes the
signed ratio cut. Nevertheless, the following theorem proves
that this generalization is hopeless no matter how we choose
as our indicators {x1, ...,xk}:

Theorem 3. There does not exist any representation of
{x1, ...,xk} such that the objective (8) minimizes the general
k-way signed ratio cut (defined in Section 3.4).

Proof. Recall that to define a proper representation of
{x1, ...,xk}, we need to pick two representatives a, b ∈ R,
a 6= b, xc(i) = a if i ∈ πc and xc(i) = b if i /∈ πc, such that
the objective (8) minimizes the signed ratio cut.

To begin with, we rewrite the k-way objective (8) by plug-
ging (6) into it as follows:

min
{x1,...,xk}∈I

0

@

k
X

c=1

1

|πc|

X

(i,j)

|Aij |(xc(i) − sgn(Aij)xc(j))
2

1

A .

(9)
We can prove the theorem by showing that no matter how
we choose a, b, we will incorrectly punish some favorable
clustering patterns when minimizing (9).

First we argue that b must be 0. This is because when
two nodes, i and j, are both not in πc, we will never know
whether i and j are in the same cluster or not by only seeing
information about xc. Therefore, in this case, we have to
assign xc(i) = xc(j) = 0 to ensure a zero penalty, or other-
wise we may possibly penalize some patterns that conform
to weak balance.

However, given b = 0, any a 6= 0 cannot make the ob-
jective (9) correctly minimize signed ratio cut. To see this,
consider that i ∈ πc and j /∈ πc, in which case we should put
penalty only when sgn(Aij) = 1. However, any fixed choice
of a will lead to a penalty regardless of sgn(Aij). Thus, no
matter how we select a, b, we will always punish some desir-
able clustering patterns. This proves the impossibility of a
direct generalization of signed ratio cut objective by using
(8).



Notice that the above proof, however, does not apply if
we restrict k = 2. If there are only two clusters, i, j /∈ πc

implies that i, j are in the other cluster simultaneously. In
this case, we can directly punish this clustering assignment
if sgn(Aij) = −1. Therefore, under the special case k = 2,
the first argument that b needs to be 0 in the proof is no
longer valid. However, for general k > 2, b needs to be 0
as shown in the proof. This condition precludes the direct
extension of the signed Laplacian to the k-way clustering
problem.

To fix this basic theoretical flaw, we now propose alter-
nate objectives that (i) follow the weak balance clusterabil-
ity stated in Theorem 2, and (ii) are valid for general k-way
clustering.

• Positive/Negative Ratio Association:
In positive ratio association, we aim to maximize the
number of positive edges within each cluster relative
to cluster’s size. The objective can be written as:

max
{x1,...,xk}∈I

 

k
X

c=1

xT
c A+xc

xT
c xc

!

(10)

Alternatively, we can also minimize the number of neg-
ative edges within each cluster relative to the cluster’s
size. This negative ratio association criterion corre-
sponds to:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c A−xc

xT
c xc

!

(11)

• Positive/Negative Ratio Cut:
In addition to within-cluster criteria, between-cluster
criteria can also be considered. We define a positive ra-
tio cut objective by minimizing the number of positive
edges between clusters:

min
{x1,...,xk}∈I

(

k
X

c=1

xT
c (D+ − A+)xc

xT
c xc

=

k
X

c=1

xT
c L+xc

xT
c xc

)

(12)
where D+ is the diagonal degree matrix of A+. The
negative ratio cut can also be defined similarly.

• Balance Ratio Cut/Association:
We now combine both cut and association criteria to-
gether to obtain a balance criterion. According to The-
orem 2, we prefer to partition nodes such that the num-
ber of positive edges between clusters and the number
of negative edges within each cluster are both min-
imized. Thus, we define the balance ratio cut as a
combination of positive ratio cut (12) and negative ra-
tio association (11) as follows:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c A−xc

xT
c xc

+ λ
xT

c L+xc

xT
c xc

!

,

where λ is a weighting parameter. In the following we
set λ = 1 for the case where within-cluster criterion is
as important as between-cluster criterion. The balance
ratio cut can thus be further simplified as follows:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c (D+ − A)xc

xT
c xc

!

. (13)

While this objective is almost the same as (8) except
that the matrix in the quadratic form D+ −A changes

to D̄ − A, this definition resolves the weakness of the
signed Laplacian defined in [13]. In Section 6, we will
show that clusters derived from solving (13) will be
better than those derived from solving (8), which re-
confirms our analysis.

Of course, we can derive another balance criterion by
considering the maximization problem. Following the
same flow, we can define balance ratio association as
combination of negative ratio cut and positive ratio
association with equal weight. This objective can be
derived as follows:

max
{x1,...,xk}∈I

 

k
X

c=1

xT
c (D− + A)xc

xT
c xc

!

. (14)

• Balance Normalized Cut:
Similar to clustering tasks in unsigned networks, we
can also consider the objectives normalized by clus-
ter volume instead of by the number of nodes in the
clusters. For example, we can extend (13) to balance
normalized cut as follows:

min
{x1,...,xk}∈I

 

k
X

c=1

xT
c (D+ − A)xc

xT
c D̄xc

!

, (15)

Balance normalized association can also be derived
from (14) in the same way.

As an analogy to normalized cut and association in
unsigned networks, these two objectives hold a similar
equivalence in (2). This nice property is summarized
by the following theorem:

Theorem 4. Minimizing balance normalized cut is
equivalent to maximizing balance normalized associa-
tion.

Proof. Consider the objective (15), we have:

(15) ≡ max
{x1,...,xk}∈I

 

k −
k

X

c=1

xT
c (D+ − A)xc

xT
c D̄xc

!

≡ max
{x1,...,xk}∈I

 

k
X

c=1

xT
c

`

D̄ − (D+ − A)
´

xc

xT
c D̄xc

!

≡ max
{x1,...,xk}∈I

 

k
X

c=1

xT
c (D− + A)xc

xT
c D̄xc

!

,

by the fact that D̄ = D++D−. Thus, (15) is equivalent
to maximizing balance normalized association.

4.2 Solving Signed Objectives via Weighted Ker-
nel K-means

One way to solve the signed cut/association objectives is
to use spectral relaxation as traditional spectral clustering
does. However, as described in Section 3.1, this approach
fails to scale to very large networks due to computational
issues. Thus, we now argue that similar to unsigned network
clustering, we can use k-means like algorithm to optimize the
objectives, by showing the following theorem:

Theorem 5 (Equivalence of Objectives). For any
signed cut or association objective, there exists some corre-
sponding weighted kernel k-means objective (with properly
chosen kernel matrix), such that these two objectives are
mathematically equivalent.



Proof. We prove this by showing that both weighted ker-
nel k-means objective and signed cut/association objectives
can be represented as trace maximization problems. We will
also show that given a signed objective, we can construct the
kernel matrix such that the corresponding weighted kernel
k-means objective is equivalent to the signed objective.

First we consider the weighted kernel k-means objective (4).
As proved in [7], this objective can be rewritten as the fol-
lowing trace maximization problem:

max
Y

trace
“

Y T W 1/2KW 1/2Y
”

, (16)

where Y is an (weighted) indicator matrix, W is the diagonal
weight matrix for the nodes, and K is the kernel matrix.

Now we show how to derive the corresponding trace max-
imization given the graph cut/association objectives in Sec-
tion 4.1. Generally, every objective can be written in the
following form: k

X

c=1

xT
c Ḱxc

xT
c Wxc

, (17)

where W is some diagonal weight matrix, and the goal is to
either maximize or minimize (17).

First, we represent the problem as a maximization prob-
lem. We use the following equivalence when the original
problem is a minimization problem:

min
{x1,...,xk}∈I

k
X

c=1

xT
c Ḱxc

xT
c Wxc

≡ max
{x1,...,xk}∈I

 

k −
k

X

c=1

xT
c Ḱxc

xT
c Wxc

!

≡ max
{x1,...,xk}∈I

k
X

c=1

xT
c (W − Ḱ)xc

xT
c Wxc

≡ max
{x1,...,xk}∈I

k
X

c=1

xT
c K̃xc

xT
c Wxc

, (18)

Next, we enforce the positive semi-definiteness on K̃ in
(18) by the fact that:

max
{x1,...,xk}∈I

k
X

c=1

xT
c K̃xc

xT
c Wxc

≡ max
{x1,...,xk}∈I

 

σk +
k

X

c=1

xT
c K̃xc

xT
c Wxc

!

≡ max
{x1,...,xk}∈I

k
X

c=1

xT
c (σW + K̃)xc

xT
c Wxc

.

(19)

Therefore, every problem in form (18) can be rewritten as:

max
{x1,...,xk}∈I

 

k
X

c=1

xT
c K̂xc

xT
c Wxc

!

, (20)

where K̂ is a kernel matrix. This is because we can always
choose some sufficiently large σ in (19) such that K̂ = σW +

K̃ is positive semi-definite.
Finally, (20) is in fact equivalent to a trace maximization

problem since:

(20) ≡ max
y1...yk

k
X

c=1

yT
c (W−1/2K̂W−1/2)yc

yT
c yc

≡ max
Y

trace
“

Y T W 1/2(W−1K̂W−1)W 1/2Y
”

, (21)

where Y ∈ R
n×k, whose cth column is also the normalized

indicator ỹc for cluster πc, i.e. ỹc = yc/
p

(yT
c yc).

Hence, by choosing the kernel matrix to be K = W−1K̂W−1,
(21) is equivalent to (16). This proves the theorem.

This equivalence implies that we can define some implicit
kernel matrix K̂ given a signed cut/association objective by
choosing a proper σ. In addition, running weighted kernel k-
means with W−1K̂W−1 as the input kernel matrix is equiv-
alent to optimizing the corresponding signed cut/association
objective, since both of them optimize the same trace max-
imization problem.

To explain how to derive the corresponding signed graph
kernel more clearly, we take balance normalized cut (15) as
an example. With the notations in the proof, the objective
is to minimize (17) with Ḱ = D+ − A and W = D̄. By
(18), we can rewrite it as a maximization problem by setting

K̃ = W − Ḱ = D̄ − (D+ − A). The problem is further

equivalent to (20) by setting K̂ = σW+K̃ = σ′D̄−(D+−A).
This becomes our balance normalized cut kernel, since we
can always choose a large enough σ′ such that K̂ is positive
semi-definite. Also, by (21), if we set another kernel matrix

K as W−1K̂W−1 = σ′D̄−1 − D̄−1(D+ − A)D̄−1, and use
K as the input of weighted kernel k-means, we can optimize
balance normalized cut efficiently.

5. MULTILEVEL APPROACH FOR LARGE-
SCALE SIGNED GRAPH CLUSTERING

In Section 4.2, we have seen that there are two general
approaches to optimize signed graph clustering objectives -
spectral clustering and weighted kernel k-means algorithm.
Typically, k-means based algorithm is more efficient and
scalable than spectral clustering. However, k-means algo-
rithm is also easier to be trapped into qualitatively poor lo-
cal optima. In this section, we will use a popular multilevel
framework which allows kernel k-means based algorithms to
converge to better local optima.

Our approach can be viewed as a generalization of Graclus
[7] for the signed network setting. The multilevel approach
is a divide-and-conquer method that includes three phases:
coarsening, base clustering and refinement.

5.1 Coarsening Phase
In the coarsening phase, given the input graph G0, we

generate a series of graphs G1 . . . Gℓ, such that |Vi+1| < |Vi|
for all 0 ≤ i < ℓ. Given a graph Gi, the coarsened graph
Gi+1 is generated as follows: At the beginning every node is
unmarked. We then visit each node in a random order, and
try to merge two nodes in Gi into one supernode in Gi+1

with the following strategy: If the node, say x, is already
marked then we skip it. Otherwise, we consider all of x’s
unmarked neighbors y, and select the one such that the edge
weight Ai

xy is the largest (where Ai is the adjacency matrix
of Gi). We then merge x and y as a supernode z, and all
the neighbors of x and y are added to neighbors of z. We
mark both x and y. If all neighbors of x are marked, then
we simply mark x and do not merge it into any node. After
all nodes are visited, the supernodes and non-merged nodes
become the vertex set of Gi+1.

The matching strategy is quite intuitive since the larger
the edge weight between x and y, the more likely that x and
y are in the same cluster. There can be some variants of the
matching strategy such as visiting nodes ordered by their
positive degree and so on.

5.2 Base Clustering Phase
When the original graph is coarsened to a small enough

graph, we can directly perform clustering on the coarsest
graph Gℓ. We take two kinds of approaches to do base clus-



tering on Gℓ: Minimize balance normalized cut of Aℓ with
spectral relaxation, or perform unsigned graph clustering on

Aℓ+ using region-growing algorithm as in Metis [11].
Here are some pros and cons between these two approaches.

Considering balance normalized cut using spectral relax-
ation usually gives a better initialization, but it could be
slow if Gℓ is still very large. The latter might occur if the
original network is power-law so that the size reduction at
each level might not be significant. On the other hand, the
region-growing algorithm used in Metis is very efficient since
it requires no eigenvector computation. However, since this
method does not consider signed edges in Gℓ, it is possible
to derive a base clustering result such that both positive and
negative edges are dense within clusters. This problem is not
critical, however, since we will refine the clustering results
with consideration of signed edges in the refinement phase.
Therefore, for the base clustering method, we use Metis on

Aℓ+ in our experiments.

5.3 Refinement Phase
After we derive the base clustering result in Gℓ, we run

the refinement algorithm to derive clustering results in Gℓ−1,
Gℓ−2, . . . , G0. Thus, given a clustering result in Gi, the
goal is to get a clustering result in Gi−1. To do this, we first
project the clustering result in Gi to Gi−1 as the initial clus-
ters. In other words, for x ∈ πc in Gi, all the nodes in Gi−1

which were merged to x at the coarsening phase are assigned
to πc. After having the initial clusters, we refine the cluster-
ing result by running weighted kernel k-means. As shown in
Theorem 5, we can choose a suitable kernel of Ai such that
optimizing the weighted kernel k-means objective is equiv-
alent to optimizing the appropriate signed graph criterion.
In our implementation, we choose balance normalized cut
kernel as our kernel matrix. Notice that since at each level
i we have a good initialization by projecting the clustering
from level i − 1, weighted kernel k-means usually converges
quickly.

The quality of clusters is dominated by the local opti-
mal of the weighted kernel k-means objective. To make the
clustering result better, we can use a local search strategy,
which allows k-means to converge to a better local optimal.
We incorporate this local search strategy with the standard
batch k-means algorithm. Basically, we alternatively run
the batch k-means and incremental k-means at each refine-
ment level. More details of this ping-pong procedure can be
found in [6].

5.3.1 Choosing the Kernel Matrix
In Theorem 5 we have seen that we can choose a suffi-

ciently large σ to construct a kernel matrix K. However, in
practice, if σ is too large, it makes the k-means algorithm
harder to escape a poor local optimal. As a result, the clus-
tering result could be bad. On the other hand, a small σ
which does not make K positive semi-definite can still be
used for k-means algorithm since K might still possibly pro-
vide a pretty accurate distance measurement. Observing
this fact, we develop a procedure for finding an appropriate
σ for K.

We begin with some small σ and derive a corresponding
K as the input of our ping-pong procedure. This K could
be effective for distance measurement in k-means even if it
is not positive semi-definite. However, it is also possible
that k-means algorithm cannot converge with such K due
to the lack of positive definiteness. If we observe lack of

convergence, we change K by increasing σ and repeat the
ping-pong procedure.

On the other hand, if no move occurs in batch k-means,
it might be a signal that the σ is too large to make k-means
jump out from the local optimal. So, in this case, we change
K by decreasing σ and repeat the ping-pong procedure. We
do not change σ in other cases.

5.3.2 Computational Issues
Now let us discuss the computational complexity of our k-

means based refinement procedure. In Algorithm 1, the bot-
tleneck of computation is to compute the weighted distance
D(vi,mc) for every pair (i, c). If we observe the weighted
distance formula in Equation (5), the first term Kii is a
constant for fixed i, so we only need to compute last two
terms when reassigning nodes to clusters. Now consider the
balance normalized cut kernel K = σD̄−1 − D̄−1D+D̄−1 +
D̄−1AD̄−1. We notice that the first two terms in K are
diagonal matrices, which only contribute values for all Kii,
so that Kij = (D̄−1AD̄−1)ij for all i 6= j. By substituting
these to (5) and simplifying all expressions, we have:

D(vi,mc) ∝

8

<

:

−
2

P

j∈c Aij

wi

P

j∈c wj
+ αc, if i /∈ πc,

−
2(

P

j∈c Aij+σwi−D+

ii
)

wi

P

j∈c wj
+ αc, if i ∈ πc,

(22)

where αc is a constant for fixed c:

αc =

P

j,l∈c Ajl +
P

j∈c(σwj − D+
jj)

(
P

j∈c wj)2
.

Therefore, when running weighted kernel k-means in Al-
gorithm 1, we can first compute and store each αc in O(m)
time, where m is the number of edges in the network. Af-
ter that, for each node we compute D(vi,mc) for each c
using (22), which takes O(m + nk) time. Finally it takes
additional O(n) time to compute C∗(vi). If the number of
iterations is t, the time complexity of Algorithm 1 is only
O(t(m + nk)). The same time complexity can be derived
similarly for incremental k-means.

We can furthermore make refinement stage more efficient
by only considering refinement on boundary nodes. Specifi-
cally, at each level, we only refine nodes that have neighbors
in different clusters in initial clustering. Considering only
boundary nodes usually leads to a similar clustering result
to one derived by considering all nodes, but this makes the
whole procedure much faster.

6. EXPERIMENTAL RESULTS
In the first part of this section, we demonstrate the ef-

fectiveness of the graph objectives and kernels proposed in
Section 4.1. In the second part, we show that the multi-
level approach is faster than other state-of-the-art methods,
and it yields satisfactory clustering results. In addition, we
show that our approach is scalable to networks with millions
of nodes and edges.

6.1 Graph Kernels
We now compare the graph objectives and kernels pro-

posed in Section 4.1. In particular, we show that the pro-
posed balance ratio cut and balance normalized cut kernels
are effective in solving the k-way clustering problem.

Criteria and Kernels. In Section 4, we showed that
each proposed objective corresponds to a kernel by repre-



Criterion Kernel

Signed Laplacian σI − L̄

Normalized Signed Laplacian σD̄−1 + D̄−1AD̄−1

Positive Ratio Association σI + A+

Positive Ratio Cut σI − L+

Ratio Association σI + A

Balance Ratio Cut σI − (D+ − A)

Balance Normalized Cut σD̄−1 − D̄−1(D+ − A)D̄−1

Table 1: Criteria and kernels considered in experiments.

senting the objective as in (19). Now we select the fol-
lowing kernels for comparison: Positive Ratio Association
(PosRatioAssoc), Ratio Association (RatioAssoc), Pos-
itive Ratio Cut (PosRatioCut), Balance Ratio Cut (Bal-
RatioCut) and Balance Normalized Cut (BalNorCut) as
representatives of our proposed methods, and Signed Lapla-
cian (SignLap), Normalized Signed Laplacian (NorSign-
Lap) as the current state-of-the-art spectral methods [13].
We summarize these kernels in Table 1. For each kernel,
we properly choose the smallest σ such that K is positive
semi-definite, by computing the spectrum of the matrix.

Experimental Setup and Metrics. To compare the
effectiveness of each kernel, we create some synthetic net-
works with the following procedure. We begin with a com-
plete 5-weakly balanced network Acom, in which group sizes
are 100, 200, . . . 500 respectively. We then uniformly sample
some entries from Acom to form a weakly balanced network
A, with two parameters: sparsity s and noise level ǫ. The
sparsity s represents the percentage of edges sampled from
Acom, and the noise level ǫ specifies the probability of flip-
ping the sign of an edge when sampling. Afterwards, we
consider each kernel and its corresponding objective in (19),
and derive the clustering using spectral clustering. When we
perform spectral clustering, we run k-means ten times with
different initializations and select the one that gives us the
smallest objective value since a bad initialization of k-means
might influence the clustering result.

To evaluate a clustering result (or an indicator set {x1, ...,xk}
in other words), we first consider the following objective
value:

k
X

c=1

xT
c A−xc + xT

c L+xc

xT
c Wxc

. (23)

We call (23) the ratio objective if W = I and normalized
objective if W = D̄. Both objectives measure the degree
of imbalance of clusters, with size or volume normalization.
Typically, if the underlying kernel is ratio normalized, we use
ratio objective to measure the clustering result; otherwise,
we use normalized objective to measure the clustering result.
Note that the normalized objective is upper bounded by k.
In addition, since we also have the “real” clustering as the
ground truth in the synthetic datasets, we can calculate the
error rate of clustering based on the ground truth. Specif-
ically, we calculate the percentage of misclassified edges if
we apply the clustering to Acom. We consider an edge to
be misclassified if the edge is a between-cluster edge and it
is positive, or if the edge is a within-cluster edge and it is
negative. The precise definition of error rate is:

k
X

c=1

xT
c A−

comxc + xT
c L+

comxc

n2
,

where n is the number of nodes in Acom. To make the com-
parison fair, all results are averaged over ten times trials.

Results. In the first experiment, we sample from Acom

with different sparsity levels and a fixed ǫ = 0, i.e., no noise.
Since in most cases we expect a network to be sparse, we
zoom in the range of sparsity s ∈ [4 × 10−3, 10−1]. The
results are shown in Figure 1. A lower error rate and objec-
tive implies a more effective method. We can see that Pos-
RatioAssoc, NegRatioAssoc and PosRatioCut, which only
consider one of positive or negative criterion, perform worse
than others. This confirms that both positive and negative
relationships are essential when we cluster signed networks.
Furthermore, we see that BalRatioCut and BalNorCut out-
perform SignLap and NorSignLap under every sparsity level,
and the difference becomes significant when a graph becomes
more sparse. This is also not surprising since SignLap and
NorSignLap are not optimizing the desired clustering pat-
terns when k = 5, as explained in Theorem 3.

In the second experiment, we fix the sparsity at 10−2 and
increase noise level ǫ from 0 to 0.5. The results are shown
in Figure 2. Here we observe that for ǫ < 0.17, BalRatioCut
and BalNorCut still give the lowest error rate, but their error
rates go higher for larger ǫ. However, if we see in Figures 2b
and 2c, we observe that their objectives are still quite small
compared with others. The possible reason is that when
noise level goes too high, antagonistic clusters are no longer
significant. In such case, ground-truth clusters cannot be
captured by minimizing these objectives.

In summary, we see that BalRatioCut and BalNorCut are
very effective in k-way clustering and improve the state-of-
the-art signed Laplacian based methods.

6.2 Multilevel Clustering
We now show that the quality of results using the multi-

level clustering method discussed in Section 5 is comparable
to recent state-of-the-art methods. Furthermore, multilevel
clustering is much faster than other methods, so it can scale
up to large-scale signed networks. We have implemented
our multilevel clustering algorithm in C++. In refinement
phase, we use balance normalized cut kernel for weighted
kernel k-means, since it gives us the most favorable result
as shown in Section 6.1. For efficiency, we do not apply
local search strategy and we only consider boundary nodes
in refinement phase (See Section 5.3 for details). Similarly,
to make a fair comparison, all results are averaged over ten
trials.

Methods. To compare our multilevel clustering with
other existing state-of-the-art methods, we consider the nor-
malized signed Laplacian (NorSignLap) [13]. In addition,
we also consider two more approaches, MC-SVP and MC-
MF, which are based on the low rank model proposed in
[10]. MC-SVP uses SVP to complete the network and runs
k-means on k eigenvectors of the completed matrix to get
the clustering result. while MC-MF completes the network
using matrix factorization and derives two low rank factors
U, H ∈ R

n×k, and runs k-means on both U and H. We
then select the clustering that gives us smaller normalized
balance cut objective. See [10] for more details.

Results. First we see the quality of clustering results. Us-
ing the same procedure conducted in Section 6.1, we create
some networks sampled from a complete 10-weakly balanced
network, in which each group contains 1, 000 nodes. We fix
ǫ = 0, and compare the objective and error rate of each
method under different sparsity. To make the comparison
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Figure 1: Spectral clustering results using different kernels on weakly balanced networks, with different sparsity.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

noise level

er
ro

r r
at

e

 

 

SignLap
NorSignLap
BalRatioCut
BalNorCut
PosRatioCut
NegRatioAssoc
PosRatioAssoc
RatioAssoc

(a) Error rate

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

noise level

ra
tio

 o
bj

ec
tiv

e

 

 

SignLap
BalRatioCut
PosRatioCut
NegRatioAssoc
PosRatioAssoc
RatioAssoc

(b) Ratio objective: W = I in (23)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

noise level

no
rm

al
ize

d 
ob

je
ct

ive

 

 

NorSignLap
BalNorCut

(c) Normalized objective: W = D̄ in (23)

Figure 2: Spectral clustering results using different kernels on weakly balanced networks, with different noise levels.

clearer, here we consider the balance normalized objective
for all methods. The result is shown in Figure 3. As a graph
becomes more sparse, MC-MF and MC-SVP perform worse
than NorSignLap and multilevel clustering. However, MC-
MF requires much less running time than NorSignLap. We
will discuss timing details issue in the next subsection. In
addition, the multilevel clustering outperforms other state-
of-the-art methods in most cases. It usually achieves the
lowest error rate and normalized objective.
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Figure 3: Clustering results for multilevel clustering and
other state-of-the-art methods on weakly balanced networks,
with different sparsity.

Now let us compare the efficiency of different methods.
We consider Acom to be a large balanced network, which
contains 20 groups, with 50, 000 nodes in each group. By
choosing a proper sparsity, we randomly sample some edges
from Acom to form A with desired number of edges. We then
measure the running time required for each clustering algo-
rithm under different A. Both NorSignLap and MC-SVP are
too costly to apply on this large-scale network, since both of
them require eigenvectors computation of top k eigenvectors.
Therefore, here we only compare the multilevel algorithm
with MC-MF method. While we report the running time of
whole procedure for multilevel clustering, we only report the

time for computing two factors U and H for MC-MF. Thus,
the MC-MF time we report is just an under-estimate of the
real clustering time, since we ignore the time for doing k-
means clustering on U and H. To solve matrix factorization
efficiently, we implement alternating least squares (ALS) al-
gorithm in C++ with MKL library, and run ALS iterations
3 times to derive U and H. In practice, ALS usually needs
more than 3 iterations to obtain converged U and H, which
will take more time than we report.

The running time of the multilevel clustering and MC-MF
is shown in Figure 4. We can see that the multilevel cluster-
ing is faster than MC-MF even if we only consider the time
for matrix factorization procedure of MC-MF. In particular,
we can obtain the clustering result of a 20-weakly balanced
network, with 1M nodes and 100M edges (so, sparsity =
10−4), in only 398.77 seconds. We further plot the clustering
result of this network in Figure 5. By reordering nodes based
on clustering result, we can see A+ becomes nearly block-
diagonal while A− is pretty dense in the between-cluster
part. This reconfirms that our multilevel algorithm is both
efficient and effective.

Finally, we apply our multilevel clustering algorithm to
large-scale real networks considered by Leskovec et al. [14],
in which the authors argue that there are no significant
(two) nearly antagonistic groups, though local structure in
these networks tends to be balanced. We now extend the
consideration from balance to weak balance, and examine
whether there exist k nearly antagonistic groups in these
networks. We first make the network symmetric by consid-
ering sgn(A+A′), and take the largest connected component
as the input of the multilevel clustering algorithm. We then
obtain several clustering results by considering k from 3 to
30. Since we do not have the ground truth of clustering in
real networks, we can only compute the “empirical” error
rate on A, i.e., the percentage of misclassified edges in A
under such clustering.
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Figure 4: Running time of multilevel clustering and MC-
MF on weakly balanced networks, with 1 million nodes and
100 million edges. For MC-MF we report the time to solve
matrix factorization only, while in multilevel clustering we
report the time for the whole procedure.

Figure 5: Clustering result of a 20-weakly balanced network,
with 1M nodes and 100M edges. We see that most positive
edges are within clusters and most negative edges are be-
tween clusters. The normalized objective of this clustering
is 0.032, which is much smaller than 20.

We find the empirical error rate for each k is very close
to each other, so we report the average error rate for each
dataset, which is summarized in Table 2. Similar to the
observation in [14], the empirical error rates of k-way clus-
tering result are trivially achievable (by putting all nodes
into one cluster). This implies that we can hardly find sig-
nificant k nearly antagonistic groups in these networks even
if we extensively consider weak balance.

7. CONCLUSIONS
In this paper, we study the k-way clustering problem in

signed networks. We first find that the state-of-the-art signed
graph kernels, (normalized) signed Laplacian, suffer from a
weakness when we apply them to the k-way clustering prob-
lem. Thus, we propose some new signed cut and association
objectives and kernels. In particular, we show one of our
proposed objectives, balance normalized cut, is both theo-
retically sound and experimentally effective. Furthermore,
we prove that our proposed objectives are mathematically

Epinions Slashdot Wikipedia
# of nodes 119,070 82,052 7,064
# of edges 1,403,138 994,052 200,590

% of + edges 0.8321 0.7641 0.7855
error rate 0.1679 0.2369 0.2186

avg time (sec) 9.860 6.830 0.450

Table 2: Multilevel clustering results on large-scale real net-
works. The (empirical) error rate is the percentage of mis-
classified edges for k = 3 to 30; the above results support
observation in [14] that these networks do not have signifi-
cant clustering structure.

equivalent to the weighted kernel k-means objective. Based
on this equivalence, we propose a multilevel clustering algo-
rithm, which is competitive to recent state-of-the-art meth-
ods in terms of the quality of the clustering result, while it
is much more efficient and scalable.
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