MEGA: Multi-View Semi-Supervised Clustering of Hypergraphs Joyce Jiyoung Whang KAIST

J. J. Whang, R. Du, S. Jung, G. Lee, B. Drake, Q. Liu, S. Kang, and H. Park Proceedings of the VLDB Endowment (VLDB), 2020

Hypergraph

- A hypergraph is defined by a set of nodes and a set of hyperedges.
- A hyperedge connects two or more nodes.

Graph

Hypergraph

Hypergraph Clustering

- Hypergraph Normalized Cut
 - Minimize the number of between-cluster hyperedges

$$\max_{\widetilde{\boldsymbol{Y}} \geq 0, \widetilde{\boldsymbol{Y}}^T \widetilde{\boldsymbol{Y}} = \boldsymbol{I}_k} \operatorname{trace}(\widetilde{\boldsymbol{Y}}^T \boldsymbol{D}_v^{-1/2} \boldsymbol{A} \boldsymbol{F} \boldsymbol{D}_e^{-1} \boldsymbol{A}^T \boldsymbol{D}_v^{-1/2} \widetilde{\boldsymbol{Y}})$$

Hypergraph normalized cut can be represented by the above trace maximization problem.

 $\leftarrow e_3$ and e_6 are between-cluster hyperedges.

Hypergraph Clustering

Hypergraph Normalized Cut

$$\max_{\widetilde{\boldsymbol{Y}} \geq 0, \widetilde{\boldsymbol{Y}}^T \widetilde{\boldsymbol{Y}} = \boldsymbol{I}_k} \operatorname{trace}(\widetilde{\boldsymbol{Y}}^T \boldsymbol{D}_v^{-1/2} \boldsymbol{A} \boldsymbol{F} \boldsymbol{D}_e^{-1} \boldsymbol{A}^T \boldsymbol{D}_v^{-1/2} \widetilde{\boldsymbol{Y}})$$

Weighted Kernel K-Means

$$\max_{\widetilde{\boldsymbol{U}} \geq 0, \widetilde{\boldsymbol{U}}^T \widetilde{\boldsymbol{U}} = \boldsymbol{I}_k} \operatorname{trace}(\widetilde{\boldsymbol{U}}^T \boldsymbol{\Pi}^{1/2} \boldsymbol{K} \boldsymbol{\Pi}^{1/2} \widetilde{\boldsymbol{U}})$$

- Equivalence of the Objectives
 - $\Pi \coloneqq D_v, K \coloneqq D_v^{-1}AFD_e^{-1}A^TD_v^{-1} \leftarrow \Pi : \text{weight}, K: \text{kernel}$
 - Hypergraph normalized cut is equivalent to weighted kernel K-Means

Hypergraph Clustering

- Weighted Kernel K-Means Algorithm (WKKM)
 - Optimize the hypergraph normalized cut using the WKKM algorithm.

Multilevel Hypergraph Clustering

- Multilevel Hypergraph Clustering Algorithm (hGraclus)
 - Coarsen the given hypergraph to get a series of smaller hypergraphs
 - Apply the WKKM algorithm multiple times at different scales.

Coarsening: create a smaller hypergraph by merging nodes.

Multilevel Hypergraph Clustering

- Clustering Performance
 - hGraclus shows the best performance

		SWS	SPC	hMetis	hGraclus
o u pour	hNCut	1.276	3.286	0.659	0.550
QUERY	Run Time	51.3	0.131	1.230	0.005
CENE	hNCut	$\overline{0.720}$	$\bar{2}.\bar{3}6\bar{1}$	$\overline{0.512}$	$\bar{0}.\bar{4}9\bar{6}$
GENE	Run Time	193.5	0.267	0.519	0.009
CORA	hNCut	$-\bar{2}.\bar{1}6\bar{3}$	$\overline{4.542}$	$\overline{0.588}$	$\overline{0.512}$
	Run Time	871.7	0.090	0.432	0.008
DBLP5	hNCut	$\overline{0}.\overline{9}3\overline{7}$	$\overline{2}.\overline{9}2\overline{0}$	$-\bar{0}.\bar{2}0\bar{6}$	$\bar{0}.\bar{1}3\bar{1}$
	Run Time	2331.0	4.628	1.387	0.057
DBLP10	hNCut	$\overline{2.149}$	$\bar{6}.\bar{2}8\bar{9}$	$-\bar{0}.\bar{4}3\bar{5}$	$\overline{0.321}$
	Run Time	8068.3	20.7	3.394	0.114

Revisit Hypergraph Normalized Cut

Hypergraph Normalized Cut

$$\max_{\widetilde{\boldsymbol{Y}} \ge 0, \widetilde{\boldsymbol{Y}}^T \widetilde{\boldsymbol{Y}} = \boldsymbol{I}_k} \operatorname{trace}(\widetilde{\boldsymbol{Y}}^T \boldsymbol{D}_v^{-1/2} \boldsymbol{A} \boldsymbol{F} \boldsymbol{D}_e^{-1} \boldsymbol{A}^T \boldsymbol{D}_v^{-1/2} \widetilde{\boldsymbol{Y}})$$
$$\max_{\widetilde{\boldsymbol{Y}} \ge 0, \widetilde{\boldsymbol{Y}}^T \widetilde{\boldsymbol{Y}} = \boldsymbol{I}_k} \operatorname{trace}(\widetilde{\boldsymbol{Y}}^T \boldsymbol{B} \widetilde{\boldsymbol{Y}}) \equiv \min_{\widetilde{\boldsymbol{Y}} \ge 0, \widetilde{\boldsymbol{Y}}^T \widetilde{\boldsymbol{Y}} = \boldsymbol{I}_k} \|\boldsymbol{B} - \widetilde{\boldsymbol{Y}} \widetilde{\boldsymbol{Y}}^T \|_F^2.$$

Symmetric Nonnegative Matrix Factorization (SymNMF)

$$\min_{V \ge 0} \|B - VV^T\|_F^2 \quad (V \in R_+^{n \times k})$$

Although the constraints on \tilde{Y} and V are different, the function to minimize is the same. The hypergraph normalized cut can be reformulated as a SymNMF problem.

Hypergraph Clustering via SymNMF

• *V* can be interpreted as a clustering assignment matrix.

 $\min_{V \ge 0} ||B - VV^T||_F^2 \quad (V \in R_+^{n \times k}) \quad n \text{ nodes and } k \text{ clusters}$

Nonnegative Matrix Factorization (NMF)

- NMF as a Clustering Method: $\min_{(W,H)\geq 0} ||X WH||_F^2$
 - *H* matrix can be interpreted as a clustering assignment matrix

Low-rank representation (*n* data points, *k* clusters)

Columns of *W***: Basis vectors**

- Multi-View Clustering
 - Hypergraph: higher-order relationships among the objects
 - \rightarrow optimize the hypergraph normalized cut
 - Auxiliary relationships among the objects
 - Similarity between the objects
 - Multiple features or attributes of the objects

- Multi-View Clustering
 - Hypergraph: higher-order relationships among the objects
 - \rightarrow optimize the hypergraph normalized cut
 - Auxiliary relationships among the objects
 - Similarity between the objects
 - Multiple features or attributes of the objects

Using SymNMF

Using NMF

- Given *p* feature sets and *q* relationships
 - $X_i \in R_+^{l_i \times n}, i = 1, 2, \dots, p, S_j \in R_+^{n \times n}, j = 1, 2, \dots, q$
 - $S_j \coloneqq D_v^{-1/2} AF D_e^{-1} A^T D_v^{-1/2} \rightarrow \text{Hypergraph normalized cut}$
 - α_i and β_j weigh the relative importance

 $\min_{(\boldsymbol{W}_i, \boldsymbol{H}, \widehat{\boldsymbol{H}}_j) \ge 0} \sum_{i=1}^p \alpha_i \| \boldsymbol{X}_i - \boldsymbol{W}_i \boldsymbol{H} \|_F^2 \rightarrow \mathsf{NMF} \text{ of } \boldsymbol{X}_i$

$$+\sum_{j=1}^{q}\beta_{j}\left\|\boldsymbol{S}_{j}-\widehat{\boldsymbol{H}}_{j}^{T}\boldsymbol{H}\right\|_{F}^{2}+\sum_{j=1}^{q}\gamma_{j}\left\|\widehat{\boldsymbol{H}}_{j}-\boldsymbol{H}\right\|_{F}^{2}\rightarrow\mathsf{SymNMF}\,\mathsf{of}\,\boldsymbol{S}_{j}$$

- Multi-view Clustering Objective Function
 - *H* is the shared factor: captures all the signals given by X_i and S_j
 - *H* can be used as a **clustering assignment** matrix

$$\min_{(\boldsymbol{W}_{i},\boldsymbol{H},\widehat{\boldsymbol{H}}_{j})\geq 0} \sum_{i=1}^{p} \alpha_{i} \|\boldsymbol{X}_{i} - \boldsymbol{W}_{i}\boldsymbol{H}\|_{F}^{2}$$

$$+ \sum_{j=1}^{q} \beta_{j} \|\boldsymbol{S}_{j} - \widehat{\boldsymbol{H}}_{j}^{T}\boldsymbol{H}\|_{F}^{2} + \sum_{j=1}^{q} \gamma_{j} \|\widehat{\boldsymbol{H}}_{j} - \boldsymbol{H}\|_{F}^{2}$$

Semi-Supervised Learning

- Incorporating partially observed labels
 - $P \in \{0, 1\}^{k \times n}$, $p_{ij} = 1$ if the *j*-th object belongs to the *i*-th cluster
 - *p_{ij}* = 0: (i) the *j*-th object does not belong to the *i*-th cluster (ii) not observed
 To distinguish these two cases, we introduce a masking matrix *M*

Ground-truth clusters

Partially observed matrix P

Semi-Supervised Learning

- Masking Matrix M
 - $m_{ij} = 1$ if p_{ij} is observed, 0 otherwise.
 - $P \approx WH, W \in R^{k \times k}_+$, *H* is the shared factor.

Semi-Supervised Multi-View Clustering

- The Objective Function
 - Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning

→ Optimize the hypergraph normalized cut

$$\begin{aligned}
S_{j} \coloneqq D_{v}^{-1/2} AF D_{e}^{-1} A^{T} D_{v}^{-1/2} \\
&\uparrow \\
(\widetilde{W}, W, H, \widehat{H}_{j}) \ge 0 \\
&+ \sum_{j=1}^{q} \gamma_{j} \left\| \widehat{H}_{j} - H \right\|_{F}^{2} + \sum_{j=1}^{q} \beta_{j} \left\| S_{j} - \widehat{H}_{j}^{T} H \right\|_{F}^{2} \\
&+ \sum_{j=1}^{q} \gamma_{j} \left\| \widehat{H}_{j} - H \right\|_{F}^{2} + \left\| \mathbb{M} \circ (P - WH) \right\|_{F}^{2}
\end{aligned}$$

Semi-Supervised Multi-View Clustering

- The Objective Function
 - Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning

$$\widehat{\mathbf{X}}_{i} \text{ and } \widehat{\mathbf{S}}_{j} \text{ are incorporated}$$

$$\widetilde{\mathbf{X}} = \left[\sqrt{\alpha_{1}} \mathbf{X}_{1}; \sqrt{\alpha_{2}} \mathbf{X}_{2}; \cdots; \sqrt{\alpha_{p}} \mathbf{X}_{p}\right]$$

$$\prod_{i=1}^{q} \widetilde{\mathbf{W}}_{i} \mathbf{W}_{i} \mathbf{W}_{i} \mathbf{W}_{i} \left\|_{F}^{2} + \sum_{j=1}^{q} \beta_{j} \left\|\mathbf{S}_{j} - \widehat{\mathbf{H}}_{j}^{T} \mathbf{H}\right\|_{F}^{2}$$

$$+ \sum_{j=1}^{q} \gamma_{j} \left\|\widehat{\mathbf{H}}_{j} - \mathbf{H}\right\|_{F}^{2} + \left\|\mathbb{M} \circ (\mathbf{P} - \mathbf{W}\mathbf{H})\right\|_{F}^{2}$$

Semi-Supervised Multi-View Clustering

- The Objective Function
 - Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning

→ Partially observed labels P

$$\min_{(\widetilde{\boldsymbol{W}},\boldsymbol{W},\boldsymbol{H},\widehat{\boldsymbol{H}}_{j})\geq 0} \left\|\widetilde{\boldsymbol{X}}-\widetilde{\boldsymbol{W}}\boldsymbol{H}\right\|_{F}^{2} + \sum_{j=1}^{q} \beta_{j} \left\|\boldsymbol{S}_{j}-\widehat{\boldsymbol{H}}_{j}^{T}\boldsymbol{H}\right\|_{F}^{2} + \sum_{j=1}^{q} \gamma_{j} \left\|\widehat{\boldsymbol{H}}_{j}-\boldsymbol{H}\right\|_{F}^{2} + \left\|\mathbb{M}\circ(\boldsymbol{P}-\boldsymbol{W}\boldsymbol{H})\right\|_{F}^{2}$$

MEGA Algorithm

- Multi-view sEmi-supervised hyperGrAph clustering
 - An alternating minimization scheme of block coordinate descent (BCD)
 - Example: a 4-block coordinate descent where p = 2, q = 1

Initialization of MEGA using hGraclus

- When MEGA is initialized by hGraclus, the performance of MEGA is improved.
 - hGraclus optimizes the hypergraph normalized cut \rightarrow SymNMF term in MEGA

		F1 (†)	
	random	hGraclus	Gain $(\%)$
syn1	87.19%	98.06%	12.47
SYN3	93.17%	100.0%	7.33
SYN5	94.84%	100.0%	5.44
SYN6	94.22%	100.0%	6.13
SYN7	78.19%	100.0%	27.89
CORA	65.48%	$\mathbf{68.58\%}$	4.73
DBLP5	84.41%	86.89%	2.94
GENE	57.16%	$\mathbf{58.50\%}$	2.34
DBLP10	70.67%	69.51%	-1.64
QUERY	57.97%	57.55%	-0.72
	Av	erage Gain	6.69

Performance of MEGA with two different initializations: random and hGraclus

→ 5 synthetic datasets, 5 real-world datasets
→ Gain: (hGraclus-random)/random*100
→ By initializing MEGA with hGraclus, we get more accurate results.

Multi-View Semi-Supervised Clustering of Web Queries

Multi-View Semi-Supervised Clustering of Web Queries

- Clustering Performance with Different Numbers of Views
 - As an additional view is incorporated, the clustering performance is improved.
 - Incorporating multiple views as well as partial supervision is important.

- Baselines: 13 different state-of-the-art methods
 - Hypergraph structure only: hGraclus, hMetis, SPC, SWS
 - Multi-view clustering: PCLDC, JNMF, SEC
 - Semi-supervised clustering: CMMC, MCCC, LGC, PLCC
 - Multi-view semi-supervised clustering: SMACD, MLAN

- In MEGA, all the parameters (α_i and β_j) are set to be ones.
- Initialize MEGA, PCLDC, JNMF with hGraclus.

Real-World Datasets

	No. of nodes No.	of hyperedges	k	Views
QUERY	481	15,762	6	$oldsymbol{X}_1,oldsymbol{X}_2,oldsymbol{S}_1,oldsymbol{P}$
GENE	2,014	2,023	4	$oldsymbol{X}_1,oldsymbol{S}_1,oldsymbol{S}_2,oldsymbol{P}$
CORA	$2,\!485$	$2,\!485$	7	$oldsymbol{X}_1,oldsymbol{S}_1,oldsymbol{P}$
DBLP5	19,756	$21,\!492$	5	$m{X}_1,m{X}_2,m{S}_1,m{P}$
dblp10	$42,\!889$	$34,\!834$	10	$m{X}_1,m{X}_2,m{S}_1,m{P}$

GENE \rightarrow S_1 : gene-disease association (hypergraph),

 S_2 : similarity between diseases, X_1 : tf-idf representations of the diseases CORA $\rightarrow S_1$: citation information (hypergraph), X_1 : predefined keywords of papers DBLP $\rightarrow S_1$: collaboration information (hypergraph),

 X_1 : tf-idf representations of papers, X_2 : citation information

	hGraclus	333	CMMC
	hMetis	////	MCCC
×¢	SPC		LGC
_	SWS		PLCC
882	PCLDC		SMACD
	JNMF		MLAN
	SEC		MEGA

	hGraclus	諸部	CMMC
	hMetis	////	MCCC
~	SPC		LGC
=	SWS		PLCC
888	PCLDC		SMACD
////	JNMF		MLAN
	SEC		MEGA

Higher F1, accuracy, and NMI scores indicate better clustering results. In terms of identifying the ground-truth clusters, MEGA outperforms the 13 different state-of-the-art methods.

Performance of MLAN, PLCC, and MEGA with different levels of supervision on DBLP5. MEGA achieves better clustering performance than the other semi-supervised methods at all different levels of supervision.

MEGA				MLAN	PLCC			
$X_1(\alpha_1)$	0.3	0.3	0.3	1.0	1.0	1.0		
$S_1 \ (eta_1)$	0.3	0.3	1.0	0.3	1.0	1.0		
$S_2(\beta_2)$	0.3	1.0	1.0	1.0	0.3	1.0		
F1 (%) -	$5\overline{7}.\overline{65}$	$5\overline{6}.\overline{95}$	$5\overline{6}.\overline{3}2$	$5\overline{6}.\overline{3}\overline{3}$	$5\overline{7}.\overline{2}7$	$\overline{58.50}$	$4\overline{8}.\overline{9}3$	$4\bar{3}.\bar{3}\bar{3}$
ACC $(\%)$	60.10	59.47	58.41	59.92	60.41	61.22	51.94	51.77
NMI (%)	23.70	22.07	18.90	19.76	20.41	21.36	9.72	14.74

Performance of MEGA with different parameters and the two most competitive baseline methods on GENE.

The performance of MEGA does not largely fluctuate depending on the parameters, and MEGA consistently outperforms the baseline methods.

Summary

- Multilevel Hypergraph Clustering (hGraclus)
 - Mathematical equivalence between the hypergraph normalized cut and the weighted kernel K-Means objective
- Multi-view Semi-supervised Clustering of Hypergraphs (MEGA)
 - Optimize the hypergraph normalized cut
 - Incorporate multiple attributes/features
 - Semi-supervised learning
 - Initialized by hGraclus
 - Effective in identifying the ground-truth clusters in real-world datasets

Big Data Intelligence Lab @ KAIST http://bdi-lab.kaist.ac.kr/ jjwhang@kiast.ac.kr