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Hypergraph

= A hypergraph is defined by a set of nodes and a set of hyperedges.

= A hyperedge connects two or more nodes.

Hypergraph Graph



Hypergraph Clustering

= Hypergraph Normalized Cut

=  Minimize the number of between-cluster hyperedges

~ T ~
max trace(Y DU_I/ZAFDe_lATDU_l/QY)
Vo vs0vTyv-r,

Hypergraph normalized cut can be represented
by the above trace maximization problem.

& e; and eg are between-cluster hyperedges.




Hypergraph Clustering

=  Hypergraph Normalized Cut
max trace(i;TDU_l/zAFDe_1ATDU_1/2}7)

>0,Y ' Y=I,

Y
= Weighted Kernel K-Means
max trace(ﬁTﬂl/QKﬂl/zﬁ)

U>0,U" U=1I,

= Equivalence of the Objectives
= [I:=D,, K:=D,;YAFD;*ATD;1 & IT: weight, K: kernel

= Hypergraph normalized cut is equivalent to weighted kernel K-Means



Hypergraph Clustering

= Weighted Kernel K-Means Algorithm (WKKM)

=  Optimize the hypergraph normalized cut using the WKKM algorithm.

Weighted Kernel K-Means
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Multilevel Hypergraph Clustering

* Multilevel Hypergraph Clustering Algorithm (hGraclus)
= Coarsen the given hypergraph to get a series of smaller hypergraphs

=  Apply the WKKM algorithm multiple times at different scales.
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Coarsening: create a smaller hypergraph by merging nodes.



Multilevel Hypergraph Clustering

" (Clustering Performance

* hGraclus shows the best performance

SWS SPC hMetis hGraclus

i hNCut 1.276 3.286 0.659 0.550
Run Time 51.3 0.131 1.230 0.005
' _G;ZN—E_ "hNCut ~ 0.720 2.361 0.512  0.496
Run Time 193.5 0.267 0.519 0.009
' _C(_)R_A_ “hNCut  2.163 4.542 0.588  0.512
Run Time &871.7 0.090 0.432 0.008
' ;I;L;5_ " hNCut ._ 0937 2920 0.206 0.131
Run Time 2331.0 4.628 1.387 0.057
e hNCut ~ 2.149 6.289 0.435  0.321
DBLP10

Run Time 8068.3 20.7 3.394 0.114




Revisit Hypergraph Normalized Cut

= Hypergraph Normalized Cut
max trace(i;TDU_l/zAFDe_1ATDU—1/217)

Y>0,Y'Y=I, /
~7 ¥~ _ ~~T o
max trace(Y BY) = min |IB—-YY |F.
Y>0.Y v=I, Y>0,Y Y=1I,

=  Symmetric Nonnegative Matrix Factorization (SymNMF)

rlp>igl||B —VVT|IZ (v e R¥K)
1 v

Although the constraints on Y and V are different, the function to minimize is the same.
The hypergraph normalized cut can be reformulated as a SymNMF problem.




Hypergraph Clustering via SYymNMF

= ¥ can beinterpreted as a clustering assignment matrix.

r‘pi{)l”B —VVT|I2 (Vv € R%¥) nnodes and k clusters
>

Cluster 1 + Cluster 2 VT

2




Nonnegative Matrix Factorization (NMF)

= NMF as a Clustering Method: min ||X — WH||%
(W,H)20

= H matrix can be interpreted as a clustering assignment matrix

Data matrix (n data points, [ features) Low-rank representation (n data points, k clusters)

X

2

H € R

X € RY™ W € RXK

Columns of W: Basis vectors



Multi-View Clustering of Hypergraphs

=  Multi-View Clustering

Hypergraph: higher-order relationships among the objects
—> optimize the hypergraph normalized cut
Auxiliary relationships among the objects

Similarity between the objects

Multiple features or attributes of the objects



Multi-View Clustering of Hypergraphs

=  Multi-View Clustering

=  Hypergraph: higher-order relationships among the objects
—> optimize the hypergraph normalized cut

Using SymNMF

= Auxiliary relationships among the objects & 5y

=  Similarity between the objects

= Multiple features or attributes of the objects Using NMF




Multi-View Clustering of Hypergraphs

" Given p feature sets and q relationships

* X, ERFTi=1,2,p, S; ERPMj=12,,q

~1/2

= §;:=1D, AFDe‘lATDv_l/2 -> Hypergraph normalized cut

" q; and f8; weigh the relative importance

min Zaz | X; — W, I-IHF - NMF of X;
(WtaH H3)>0 —1

+Zﬁg s, — 8, H|" + 3 |7 - =] 5 symumirof s
=



Multi-View Clustering of Hypergraphs

= Multi-view Clustering Objective Function
" H is the shared factor: captures all the signals given by X; and §;

= H can be used as a clustering assignment matrix

p
min Zai | X — Wﬁ@ﬁ;
(W, H,H;)>0,_—4
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Semi-Supervised Learning

" |ncorporating partially observed labels
» P € {0,1}*", p;; = 1if the j-th object belongs to the i-th cluster

" pij = 0:(i) the j-th object does not belong to the i-th cluster (ii) not observed

To distinguish these two cases, we introduce a masking matrix M/

—)

Ground-truth clusters Partially observed matrix P



Semi-Supervised Learning

= Masking Matrix M
m;; = 1if p;; is observed, 0 otherwise.

= P ~WH,W € R¥ His the shared factor.

o( — X )

M P w H

Pairwise multiplication =~ Approximate p;; by wl-Th]- only if p;; is an observed entry



Semi-Supervised Multi-View Clustering

= The Objective Function

= Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning

- Optimize the hypergraph normalized cut

~-1/2

S; =D, /?AFD;1AT D,/

]

. — T __||?
i E w3 s -8

(W,W ,H,H ;)>0 e

£ || H - H| e P - w2
pr



Semi-Supervised Multi-View Clustering

= The Objective Function

= Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning

- X; and §; are incorporated

X = [VarX1; a2 Xa; 5 /apX,y)
) o
min_ X -wa|l 36|, -7 H]

(W,W ,H,H ;)>0 e

£ || H - H| e P - w2
o




Semi-Supervised Multi-View Clustering

= The Objective Function

= Hypergraph Clustering, Multi-View Clustering, Semi-Supervised Learning
-> Partially observed labels P

e (%ol
(W,W,H,H ;)>0 = P

£ || H - H| e P - w2
pr




MEGA Algorithm

= Multi-view sEmi-supervised hyperGrAph clustering
" An alternating minimization scheme of block coordinate descent (BCD)

* Example: a 4-block coordinate descent wherep = 2,9 = 1

2
. T=T —~T
min HH w —-X H
W>0 F

~T
where W = [\/.quV:lr\/D:QW’%ﬂ],and.’)EJF = [Vaa XT jazxT],

—> in |[VEH") 7, VS
H,>0

Vg Vi H |
min HMT o(H'W"' — PT)‘ ,

min a1 | X1 — WiH||F+az | X2 — WaH|| 7

(W1,Wq,H|,W,H)>0 2

—T 2 — 2
B H81 _H, HHF+'“ ”Hl _ HHF+||MO (P - WH)|% F

WT>0 F
— ~— -2
WH X
— T Vo
min vBiH, H| _ ﬁlLs-.}
H>0 Vi H VY1 H1
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Initialization of MEGA using hGraclus

* When MEGA is initialized by hGraclus, the performance of MEGA is improved.
" hGraclus optimizes the hypergraph normalized cut - SymNMF term in MEGA

F1 (1)

random  hGraclus Gain (%)
SYNL 87.19%  98.06% 12.47  performance of MEGA with two different
SYNJ3 93.17% 100.0% o .. .
SYNE 94.84%  100.0% 544 initializations: random and hGraclus
SYNG 94.22% 100.0% 6.13
221;;1 gg'}lgé égoéggg 21’?3 - 5 synthetic datasets, 5 real-world datasets
DBLP5 84.41%  86.89% 294 = Gain: (hGraclus-random)/random*100
GENE 57-165 58-50? 2.34 - By initializing MEGA with hGraclus, we get
DBLP10 70.67% 69.51% -1.64
esrles 57 .97 B BEOL 079 Moreaccurate results.

Average Gain 6.69




Multi-View Semi-Supervised Clustering of Web Queries

S1: Query sessions - Hypergraph

Session 1
Session 2

Session 3

Queries
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X1 Embedding X,: Clicked documents

P: Partial supervision
(Semi-Supervised Learning)




Multi-View Semi-Supervised Clustering of Web Queries

" Clustering Performance with Different Numbers of Views
= As an additional view is incorporated, the clustering performance is improved.

= |ncorporating multiple views as well as partial supervision is important.
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Experimental Results

= Baselines: 13 different state-of-the-art methods
= Hypergraph structure only: hGraclus, hMetis, SPC, SWS
=  Multi-view clustering: PCLDC, JNMF, SEC
= Semi-supervised clustering: CMMC, MCCC, LGC, PLCC

=  Multi-view semi-supervised clustering: SMACD, MLAN

" In MEGA, all the parameters (@; and 3;) are set to be ones.

= |nitialize MEGA, PCLDC, JNMF with hGraclus.



Experimental Results

= Real-World Datasets

No. of nodes No. of hyperedges k Views
QUERY 481 15,762 6 X1, X2, 85, P
GENE 2,014 2,023 4 X,,81, 82, P
CORA 2,485 2,485 7 X1, 85, P
DBLPH 19,756 21,492 5 X1, X2, 81, P
DBLP10 42,889 34,834 10 X1, X2, S1, P

GENE - S: gene-disease association (hypergraph),

S,: similarity between diseases, X: tf-idf representations of the diseases
CORA - §;: citation information (hypergraph), X;: predefined keywords of papers
DBLP - S;: collaboration information (hypergraph),

X ,: tf-idf representations of papers, X,: citation information



Experimental Results
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Experimental Results

CORA CORA
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Experimental Results
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Higher F1, accuracy, and NMI scores indicate better clustering results.
In terms of identifying the ground-truth clusters, MEGA outperforms the 13 different
state-of-the-art methods.




Experimental Results
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Supervision Supervision Supervision

Performance of MLAN, PLCC, and MEGA with different levels of supervision on DBLPS5.
MEGA achieves better clustering performance than the other semi-supervised methods
at all different levels of supervision.



Experimental Results

MEGA MLAN PLCC

X1 (21) 03 03 03 1.0 1.0 1.0

Si (1) 03 03 1.0 03 1.0 1.0

So(B2) 03 1.0 10 1.0 03 1.0

F1 (%) 57.65 56.95 56.32 56.33 57.27 58.50 48.93 43.33
ACC (%) 60.10 59.47 58.41 59.92 60.41 61.22 51.94 51.77

NMI (%) 23.70 22.07 18.90 19.76 20.41 21.36 9.72 14.74

Performance of MEGA with different parameters and the two most competitive

baseline methods on GENE.
The performance of MEGA does not largely fluctuate depending on the parameters,

and MEGA consistently outperforms the baseline methods.



Summary

* Multilevel Hypergraph Clustering (hGraclus)
= Mathematical equivalence between the hypergraph normalized cut and the
weighted kernel K-Means objective
=  Multi-view Semi-supervised Clustering of Hypergraphs (MEGA)
"  Optimize the hypergraph normalized cut
* |ncorporate multiple attributes/features
= Semi-supervised learning
" |nitialized by hGraclus

= Effective in identifying the ground-truth clusters in real-world datasets



Big Data Intelligence Lab @ KAIST

http://bdi-lab.kaist.ac.kr/
jjwhang@kiast.ac.kr




